Understanding and simulating processes leads to innovation

more info

Manufacturing Processes

Our understanding of processes and sophisticated simulation techniques enable us to design efficient and safe manufacturing processes. Our services include investigations into the technological development of manufacturing processes for the production of semi-finished products and components with functional properties. This work ranges from powder technology processes, including complex fluid systems, to microfluids, the forming and processing of ductile materials as well as processing techniques for brittle materials and glass forming.



Innovative manufacturing processes for precision contours and functional components with defined property profiles

Simulation-assisted optimization of the energy and material efficiency of manufacturing processes

Modeling and simulation of powder technology and fluid dynamic processing stages, simulation methods for generative manufacturing

Forming process simulations including microstructure development and thermodynamics

Forming, processing and damage analyses for brittle materials such as glass and silicon

Powder Technology, Fluid Dynamics

By simulating powder technological processing steps and sequences, we make the manufacture of specifically shaped, defect-free components more accurate...

Forming Processes

Forming tools and processes can be designed much faster and cheaper with the aid of numerical simulations than through trial and error. This is why we develop and apply models that describe material behavior.

Machining Processes, Glass Forming

We are specialists for glass, ceramics and semi-conductor materials. Our core competencies lie in fracture mechanical analysis methods and manufacturing...

© Fraunhofer IWM



Simulation framework for multi-scale phenomena in micro- and nanosystems


The EU SimPhoNy project started in January 2014 with 11 partners from 5 countries. The aim is to develop a joint software platform that can integrate different individual simulation tools via a standardized interface. The project consortium is focused on describing complex fluids as well as micro and nanofluid systems such as lab-on-chip diagnosis applications or sensor and biochemistry applications. [more

to top

© Fraunhofer IWM



Material modeling of high strength TWIP steels


The properties of high strength TWIP steels differ from those of conventional sheet metals due to their special microstructure. In the »TWIP4EU« project, funded by the EU, the Fraunhofer IWM, together with its project partners, is developing a material model with which to more accurately simulate the TWIP steel forming process.

to top