Numerical simulation of composite materials and components

© Fraunhofer IWM

Numerical simulation is an important tool with which to reduce the experimental costs associated with material and component development. Simulations of the microstructure of composites reinforced with fibers and particles make it possible to reliably predict and optimize the thermal and mechanical properties of modern materials such as long-fiber thermoplastics (LFT) and fiber ceramics. Component properties are modified in component simulations to make full use of a material’s potential in operation.



Hohe, J.; Paul, H.; Beckmann, C., A probabilistic elasticity model for long fiber reinforced thermoplastics with uncertain microstructure, Mechanics of Materials 122 (2018) 118-132 Link

Abdul Hamid, Z.M.; Hohe, J.; Gall, M.; Fliegener, S.; Gumbsch, P., Fatigue damage and degradation model for carbon fibre reinforced polymer materials, PAMM 17/1 Special Issue: 88th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM); Könke, C.; Trunk, C. (Eds.); Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2017) 259-260 Link