Zeit |
Referent |
Vortragstitel und Abstract |
09:00 |
Prof. Dr. Chris Eberl, Institutsleitung Fraunhofer IWM |
Begrüßung und Eröffnung |
09:15 |
Dr. Matthias Funk, R&D Competence Center Fatigue & Reliability, Schaeffler AG, Herzogenaurach |
R&D Test Data Analytics and Mining (Lebensdauerbewertung in der Bauteilentwicklung auf der Basis existierender Daten) Im Rahmen des Produktentwicklungsprozesses sind nach der Konstruktion sowohl Finite-Elemente-Analysen (FEA) als auch Ermüdungsversuche und Werkstoffuntersuchungen durchzuführen. Die Dokumentation dieser Ergebnisse erfolgt in weiten Teilen der deutschen Industrielandschaft im Normalfall nicht in einer strukturierten und maschinenlesbaren Form, sondern als Ablage von PDF-Berichten bspw. in Projektordnern. Diese nicht-nachhaltige Datenhaltung erschwert eine ganzheitliche Bewertung bestehender R&D Daten und ein Screening von alten Versuchsergebnissen, z.B. mittels Maschinellem Lernen (ML) oder Data Mining Techniken. Im aktuellen Projekt »R&D Test Data Analytics and Mining« wurden Unternehmensinterne Versuchsdaten und Literatur-Ergebnisse aus Ermüdungsversuchen mit zugehöriger FEA und Werkstoffanalyse in einem standardisierten Format dokumentiert. Anhand dieser »Trainings-Daten« erfolgte die Generierung von einfachen Lebensdauermodellen mit ML-Methoden. Ziel ist es, für neue Bauteilzustände eine erste Lebensdauerabschätzung mittels ML zu erstellen und langfristig den Versuchsaufwand zu reduzieren. Hierfür ist die kontinuierliche Erweiterung dieser Datenbasis notwendig, wodurch entsprechend komplexere Modelle zur Lebensdauervorhersage möglich werden. |
09:45 |
Jochen Rühl, Scherdel Siment GmbH, Marktredwitz |
Einführung einer digitalen materialbasierten Prozess- und Produktentwicklung als strategisches Steuerungssystem zur Unternehmensführung Computational Driven Engineering ist in der heutigen Produkt- und Prozessentwicklung nicht mehr wegzudenken. Durch die Digitalisierung in Form von einer Simulation von Produkt und Prozess gewinnt man einen Einblick in Wirk- und Funktionsweisen, die durch experimentelle Methoden teilweise nur schwer zugänglich und mit einem hohen Zeit- und Kostenbedarf verbunden sind. Diese Herangehensweise kann deutlich dazu beitragen, die Innovation und Wettbewerbsfähigkeit eines Unternehmens zu steigern. Jedoch bleibt häufig ein großer Teil des Potentials ungenutzt, da dieser Ansatz nicht in eine konsequente materialbasierte Produkt- und Prozessentwicklung integriert wird. Durch eine unabhängige digitale Materialdatenbasis wird es möglich ein Bauteil und dessen Prozess in deutlich höherem Detailierungsgrad zu berechnen und dabei die speziellen Vorteile der entsprechenden Materialen gezielt zu nutzen. Über die Berechnung hinaus gilt es jetzt noch diese digitale technischen Informationen in sinnvollen Zusammenhang mit wichtigen betriebswirtschaftlichen Größen zu bringen. Erst wenn diese Hürde genommen wird, kann der eigentliche Benefit in den Unternehmensalltag Einzug halten. Die enorme Chance ein weiteres, modernes Steuerungsinstrument zur Unternehmensführung zu integrieren, welches neben traditionellen Instrumenten wesentlich zur Beschleunigung von Unternehmenstransformationen, der Geschäftsentwicklung, etc. beitragen kann, wäre damit integriert. Ein etwas anderes Verständnis von Industrie 4.0 |
10:15 |
Pause |
10:45 |
Dr.-Ing. Dietmar Tilch, Director Industrial Technology – Condition Monitoring Systems ZF Friedrichshafen AG, Industrietechnik, Lohr am Main |
Betriebs- und Verschleißüberwachung von Antriebssträngen im Feld als Service für Anlagenund Flottenbetreiber Die ZF Friedrichshafen AG ist einer der größten Getriebehersteller weltweit. Insbesondere im Bereich der industriellen und kommerziellen Antriebssysteme und Fahrzeuge erwarten große Flottenbetreiber vermehr Lösungen für eine Überwachung und prädiktive Bewertung der Zustände zentraler Komponenten. ZF entwickelt dafür dedizierte Service-Konzepte, die zusätzlich zu einer solchen Fernüberwachung auch den zuverlässigen Betrieb der Getriebe nachhaltig optimieren helfen. Der Vortrag gibt einen Überblick über die angewendeten Methoden und Systeme und zeigt auf, wie Kunden diese neue Art digitaler Dienstleistungen in ihre eigenen Prozesse integrieren können. Stichpunkte: Fernüberwachung von Windenergiegetrieben, Seilbahngetrieben, mobilen Arbeitsmaschinen und LKWs; Verschleißüberwachung und Berechnung verbrauchter Lebensdauer; Digitale Zwillinge; Service-Angebote: Predictive Maintenance, optimierte Ersatzteilbereitstellung, verlängerte Gewährleistung; Cloud Plattform; EcoSystem; IoT Security. |
11:15 |
Soeren Barteldes, QASS GmbH, Wetter |
Verarbeitung von Sensordaten zur Digitalisierung von Werkstoffen und Produktionsprozessen Sensoren arbeiten nach verschiedenen physikalischen Wirkprinzipien und werden vielfach zur Überwachung von Produktionsprozessen eingesetzt. Häufig gehen Informationen durch ungenügende Datenanalyse verloren. Dabei werden teils Informationen generiert, die ein tiefes Prozessverständnis und Werkstoffanalysen erlauben. Die Spektralanalyse bietet Möglichkeiten der referenzierten Mustererkennung beliebiger Sensorinformationen (Sensorfusion) und kaskadierende Analysen. Digitalisierte Prozesse profitieren von den Möglichkeiten der softwaregestützten Datenanalyse insbesondere im Bereich elektronischer Filterung, Clustering und autarker Entscheidungen. |
11:45 |
Dr. Christoph Schweizer, Geschäftsfeldleiter Werkstoffbewertung, Lebensdauerkonzepte, Fraunhofer IWM |
Aufbau eines Werkstoffdatenraums zur digitalen Abbildung der Werkstoffhistorie – Architektur, Softwaretools, Ontologieentwicklung Im Rahmen des Landesprojekts MaterialDigital wird aktuell ein Werkstoffdatenraum für die zwei Anwendungsfälle Metalle und Polymere entwickelt. Der Vortrag behandelt sowohl die technologische Architektur des Werkstoffdatenraums als auch den dafür notwendigen digitalen Arbeitsfluss (Ontologieentwicklung, Datenstrukturierung, -speicherung und –abfrage). |
12:15 |
Pause |
13:30 |
Heinrich Pettenpohl, Stellvertretender Abteilungsleiter; Geschäftsstellenleiter des Forschungszentrum Data Spaces, Fraunhofer ISST, Dortmund |
International Data Spaces - Data sovereignty in digital ecosystems Heute gibt es ein allgemeines Verständnis über den Wert von Daten. Die Nutzung dieser Wert- und Handelsdaten schafft enorme Umsätze für die großen Anbieter von Datenplattformen. Selten profitieren die Datenersteller in angemessener Weise von diesem Wert. Oftmals bleiben diese auf den Kosten für die Datenerstellung und -verwaltung sitzen. Darüber hinaus geben viele ihre Daten kostenlos weiter oder bezahlen damit für die Nutzung eines Dienstes. In diesem Vortrag werden die wesentlichen Konzepte des International Data Spaces vorgestellt und die Anwendung für Werkstoffdaten in digitalen Ökosystemen diskutiert. Dabei werden Anwendungsbeispiele gezeigt, sowie die technischen und organisatorischen Maßnahmen dargestellt. |
14:00 |
Johannes Zuckschwerdt, Bereichsleiter Organisationsentwicklung, Schwäbische Werkzeugmaschinen GmbH, Schramberg-Waldmössingen |
Analoge Herausforderungen bei der Digitalen Transformation |
14:30 |
Pause |
15:00 |
Moderierte Diskussion mit den Ausstellern |
16:00 |
MaterialDigital Vertiefungsworkshops |
17:15 |
Ergebnispräsentationen |
18:30 |
MaterialDigital Get Together mit Imbiss |
Mittwoch, 15. Mai 2019 |
09:00 |
Prof. Dr. Chris Eberl |
Eröffnung |
|
09:15 |
Dr. Assaf Anderson, MaterialsZone, Tel Aviv, Israel |
Materials Data for AI Collaboration Materials Zone is a distributed research platform for collaboration through interoperable data and AI modelling. New materials can now be discovered for hundreds of thousands/millions of dollars rather than the hundreds of millions of dollars it once cost. Powered by a recommendation engine, the start-up bridges the gap between materials science and data science, industry and academia. By structuring materials data and experimental protocols, recommendations can be made using the system’s inherent artificial intelligent & machine learning capabilities. Siloed data from energy to manufacturing, otherwise left scattered and unstructured on legacy systems can be creatively reused. Standardizing this data, coupled with powerful simulation techniques, Materials zone offers rapid research insights including predictions on an array of materials scientific experiments. It is a process coined as ‘upcycling of data’. Rewarding scientists for their contribution, Materials Zone's data marketplace accelerates innovation in and between industry and academia by facilitating data transactions, securing IP provenance, and upcycling valuable data. Materials Zone, a spin off from Prof. Arie Zaban’ Bar-Ilan University, has proven AI use-cases pivotal in discovering new absorbers and PV components for future devices. Working closely to curate and preserve data for the use of AI in materials. |
09:45 |
Dr. Teodoro Laino, IBM Research Zürich GmbH, Rüschlikon, Schweiz |
A Cognitive Discovery Environment for Precise Materials R&D Technological requirements in the industrial materials sector are demanding new materials with lower manufacturing costs, improved performance and sustainability, and reduced environment footprint. These requirements are driving the increased use of data and computation to generate discoveries and provide solutions in these sectors. For materials science and engineering vast amounts of data, and supporting information, are being generated and there is a requirement that these are efficiently connected and exploited. This presentation will describe a new research environment that harnesses the power of cognitive computing using machine learning (ML), natural language processing (NLP) methods and knowledge representation technologies (KG) to accelerate materials discovery. Content, functionality and applicability of the environment will be presented. |
10:15 |
Pause |
11:00 |
Dr. Joanna Procelewska, Schaeffler AG, Herzogenaurach |
Descriptor-based Methodology for Designing Tribological Systems in Industrial Applications In designing a desired tribological system for different industrial application concerning the functional friction, there are several key questions associated with design representation: how to quantitatively represent the design space of heterogeneous tribological systems, contact fatigue and chemical properties of lubricant using a small set of design variables. This contribution proposed a new descriptor-based methodology for designing tribological systems. Tribological problems are often complex and their understanding and solution rely on complex experimental data obtained from laboratory tests. Records of tribological parameters are digitized using data acquisition systems to ensure continuous recording of tribological characteristics in required output. It is proposed to use a small set of descriptors to represent properties of tribological systems quantitatively. The descriptor set should be able to cover features at different levels, including composition, lubricants, environment and their actuation. Finally, the descriptor-based representation allows the use of parametric optimization approach to search the optimal design that meets the target application. To improve the search efficiency, this methodology integrates state of the art computational design methods such as design of experiment (DOE), molecular modeling (QM), statistical sensitivity analysis, and multi-objective optimization (i.e. ANN), into one design optimization framework to automate the design process of tribological systems. |
11:30 |
Dipl.-Ing. Christof Gebhardt, Business Development CADFEM GmbH, Grafing bei München |
Mit dem Digitalen Zwilling zum serviceorientierten Geschäftsmodell Der digitale Zwilling ist das virtuelle Abbild eines spezifischen Produktes oder Anlage, das sein physisches Pendant ein Leben lang begleitet. An den Beispielen eines Safety-Relais und eines Wasserkraftwerks wird die Implementierung eines digitalen Zwillings aufgezeigt. Es wird ein effizientes Simulationsmodell zum Abbilden der physikalischen Vorgänge benötigt. Das Modell liefert einen weitergehenden Einblick in die Physik mithilfe sog. virtueller Sensoren und ermöglicht einen genaueren Überblick über den Status eines Systems, die für dessen Lebensdauer-Prognose und das Verschleißprofil relevant sind. Das Datenmanagement der virtuellen und realen Sensordaten und die Ansteuerung des Simulationsmodells erfolgen durch eine IoT-Plattform. Auf Basis der gewonnenen Daten werden weitergehende Analysen durchgeführt und in einem Dashboard visualisiert. Der Einsatz von digitalen Zwillingen ermöglicht optimierten Betrieb (Verfügbarkeit, Betriebskosten) und datengetriebene neue Geschäftsmodelle (Recommendations as a Service, Machine as a Service). |
12:00 |
Pause |
13:00 |
Dr. Anne de Baas, European Commission, Brüssel |
The role of materials modelling in digitization – challenges at the European level Delivering on the opportunities of Materials and Manufacturing within Industry 4.0 requires adding meaning to data (semantics), enabling interoperability and linking up silos. The huge benefits of structured data, common knowledge frameworks and interoperability were demonstrated with a range of case examples. Benefits include higher efficiency of materials use, improved value chain interactions and new business model opportunities. Current lack of semantics and interoperability are key barriers to accessing the value hidden in raw data (estimated to be 36 billion Euros) and to improved decision making. Ontologies are a core element of a set of solutions proposed by the panel and endorsed by audience contributions. All stakeholders are encouraged to collaborate and create interoperable ontologies open to everyone. Investments in a workforce trained in digital skills including semantic technologies is needed. The importance of overcoming ‘non-technical’ challenges such as legal, regulatory, security, data-sovereignty are highlighted. Building a system of trust and rewards for data sharing is required. Such a system, together with widely agreed semantic knowledge frameworks would enable Digital Marketplaces as an efficient way of realising Industry Commons. An audience poll showed a big gap between the need for and current capability in data interoperability and semantic technologies. It hence confirms the need for action in this important field underpinning successful digitalisation of materials and manufacturing. Strong interest was expressed in working across domains in an alliance for digital materials and manufacturing. |
13:30 |
Dr. Adham Hashibon, Fraunhofer IWM |
Digital Materials Modelling Marketplaces: A Platform for collaboration and innovation based on Data Space Management Systems Practical technologies for managing digital workflows and data curation for industrial applications in the European Digital Materials Modelling Marketplaces are presented. Digital Materials Modelling Marketplaces are emerging platforms providing all stake holders, modellers, industry and translators, ample opportunities to collaborate online to share and discover knowledge, collectively create and perform materials modelling workflows, generate and curate results and data. Marketplaces are thus an efficient way of realising Industry Commons on an EU level providing a one stop shop to all determining components that need to be interwoven for successful and accelerated deployment of materials modelling and digitalisation workflows in industry. At the core of such Marketplaces is an ontology based interoperability layer providing an Open Simulation Platform (OSP) that acts as interoperable hub underlying the Markteplace. The OSP provides means for any third party service, such as modelling software, or data services such as for materials properties, to plugin and use the OSP to exchange information on the platform and offer services to end users. In the core of the OSP is a Data Space Management System (DSMS) that provides ontology based common universal data structures (CUDS) covering all domains, models, and services. The DSMS enables in effect creating and curating and exchange of any kind of information between models (coupling and linking) as well as with other Marketplace platforms. A common format specification (h5CUDS) for all modelling data and concrete implementation of the OSP and underling DSMS system is demonstrated. |
14:30 |
Prof. Dr. Peter Gumbsch, Prof. Dr. Chris Eberl, Institutsleitung Fraunhofer IWM |
Abschlussdiskussion |
15:30 |
Ende |