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Foreword 
 
Computational modeling of materials behavior by multiscale materials modeling (MMM) 
approaches is becoming a reliable tool to underpin scientific investigations and to complement 
traditional theoretical and experimental approaches of component assessment. At transitional 
(microstructural) scales continuum approaches begin to break down and atomistic methods 
reach inherent limitations in time and length scale. Transitional theoretical frameworks and 
modeling techniques are developed to bridge the gap between the different length scales. 
 
Industrial success in high technology fields relies on the possibility to specifically engineer 
materials and products with improved performance. The success factor is the ability to make 
these material related developments timely at relatively low-costs. This demands not only the 
rapid development of new or improved processing techniques but also better understanding and 
control of material chemistry, processing, structure, performance, durability, and their 
relationships. This scenario usually involves multiple length and time scales and multiple 
processing and performance stages, which are usually only accessible via multi-scale / multi-
stage modeling or simulation. 
 
In high-payoff, high-risk technologies such as the design of large structures in the aerospace and 
nuclear industries, the effects of aging and environment on failure mechanisms cannot be left to 
conservative approaches. Increasing efforts are now focused on advancing MMM approaches to 
develop new material systems components and devices. Appropriate validation experiments are 
crucial to verify that the models predict the correct behavior at each length scale. Thus, one of 
the advantages of these MMM approaches is that, at each scale, physically meaningful 
parameters are predicted and used in models for subsequent scales, avoiding the use of 
empiricism and fitting parameters. 
 
Recent interest in nanotechnology is challenging the scientific community to design nanometer 
to micrometer size devices for applications in new generations of computers, electronics, 
photonics or drug delivery systems. These new application areas of multiscale materials 
modeling require novel and sophisticated science-based approaches for design and performance 
evaluation. Theory and modeling are playing an increasing role to reduce development costs and 
manufacturing times. With the sustained progress in computational power and MMM 
methodologies, new materials and new functionalities are increasingly more likely discovered by 
MMM approaches than by traditional trial and error approach. This is part of a paradigm shift in 
modeling, away from reproducing known properties of known materials towards simulating the 
behavior of hypothetical composites as a forerunner to finding real materials with these novel 
properties. 
 
The MMM 2006 conference provides an international forum for the scientific advances of 
multiscale modeling methodologies and their applications. 
 
I would like to thank the members of the international advisory committee, the local program 
committee and particularly the organizing team, the symposium organizers and the session 
chairs and the University of Freiburg for their engagement and support. Without their hard work 
and their devotion of time and ressources, the Third International Conference Multiscale 
Materials Modeling would not have been possible.  
 
Finally, I would like to thank our conference sponsors for their financial support: The German 
Research Foundation DFG, Accelrys Inc., Plansee S.E. and the Ministry of Science, Research and 
Art, Baden-Württemberg. 
 
Peter Gumbsch 
Conference Chair 
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ABSTRACT 
 
 

A micelle is the self-assembly of surfactant molecules formed in surfactant aqueous solution. 
The micelle has various forms such as a threadlike, spherical, discoid, and bilayer. 
Particularly, the threadlike micelle has the great possibility of the application in the industry, 
utilizing the uniqueness in its formation. However, an overall understanding of the formation 
dynamics of the threadlike micelle has not been accomplished, because of the so-called 
‘mesoscopic problem’ in dynamics. In order to understand this phenomenon, the Molecular 
Dynamics (MD) method cannot be applied to this system, because the time scale and the 
length scale of this method are too short. And the Fluid Mechanics method cannot be applied 
to this system, too, because this method cannot be considered molecular structures. The aim 
of this study is to clarify the mesoscale dynamics of the threadlike micelles by means of the 
Dissipative Particle Dynamics (DPD) simulation. DPD method is a comparatively new 
simulation method proposed by Hoogerbrugge and Koelman in 1992 and can treat the 
mesoscale range of time and length scales by many orders of magnitude compared to MD 
simulation. Moreover, the shear stress was put on a similar system, and it compared it without 
shear stress. 
 
 
1. Introduction 
 
 A surfactant is a molecule, which is composed of hydrophilic and hydrophobic parts, and it 
has two characteristic features in water. One is that it adsorbs on a vapor--liquid surface and 
the surface tension is decreased. Another is that it spontaneously aggregates to form a wide 
variety of assemblies in aqueous solution such as spherical micelles, threadlike micelles, and 
vesicles. Particularly, the threadlike micelles has been expected to apply to the cement[1], the 
drag reduction[2], etc.  
 
 We know that threadlike micellar solution shows the characteristic viscoelastic behavior, 
which is simmilar to that in semidilute and concentrated polymer systems because the miclles 
is very stable. On the other hand the relaxation of threadlike miceller solution was observed as 
a Maxwell-type relaxation with a single relaxation time as opposed to that of polymer 
systems[3-5]. That mean the relaxation time of the threadlike micelles is much shorter than 
that of the polymer. Based on the experimental results, Shikata et al. proposed the phantom 
network model to explain this relaxation behavior[4,5]. In this model, the threadlike micelles 
were not entangled and passed through each other. However, in the molecular point of view 
the breakage and reforming of the threadlike micelles  may be considering during the process 
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of the crossing for the miclles. Yamamoto and Hyodo[6] recently studied the crossing 
dynamics using the dissipative particle dynamics (DPD) simulation which is one of the 
coarse-grained model simulations. They reported that there were three kinds of schemes in the 
crossing dynamics such as the phantom crossing, the cutdown and the breakdown, thereby the 
breakage which occurs at somewhere along the threadlike micelle was the essential process in 
the relaxation mechanism and the phantom crossing can be seen as a special case of these 
processes. In the previous studies what the breakage and reformatting are the important 
process were reported, but the formation process of the threadlike micelles was not known 
and a further investigation of this phenomena is needed. The formation process might make a 
contribution to the viscoelastic behavior. Moreover, the breakage and re-formation is 
frequently done in above-mentioned crossing mechanism, hence the understanding of the 
formation process of threadlike micelles is indispensable.  
 The purpose of this paper is to clarify formation dynamics of the threadlike micelles in 
mesoscopic range where global motion of surfactant molecules is in focus while atomic 
dynamics in the molecules is somehow neglected.  DPD method[7] was employed with  an 
earlier proposed surfactant model[6] which has been confirmed to reproduce a stable 
threadlike micellar structure. 
 In this study, it is emphasized that the formation process of the threadlike micelles was firstly 
observed. From the obtained time evolution of the system, we calculated the aggregation 
number, radius of a micelle, length of a micelle and the ratio of principal moments of inertia. 
Moreover, the shear stress was put on a similar system, and it compared it without shear 
stress. 
 
 
2. Simulation Method 
 

2.1  DPD Simulation 
 
 
The dynamics of threadlike micelles is in the multi scale range of time and length scales. The 
“micro scale dynamics” of the threadlike micelles is the formation process of the micelles and 
the molecular motion in the threadlike micelles with the time scale on the order of ps to ns. 
The “macro scale dynamics” is entanglement and phantom crossing dynamics of the 
threadlike micelles with the time scale longer than 1 ms. Shikata and his coauthors reported 
that the “micro scale dynamics” for the cationic surfactant micelles are independent the 
“macro scale dynamics” and the “micro scale dynamics” for the nonionic surfactant micelles 
are dependent on the “macro scale dynamics”[5]. However, the meso scale dynamics of the 
threadlike micelles, which are the formation process, are incompletely understood because 
this scale is too short in the experiment and too long in the Molecular Dynamics (MD).  
  
 DPD method[7] is a comparatively new calculation method constructed to base on the 
fluctuation-dissipation theorem by Hoogerbrugge and Koelman in 1992. This method based 
on Newton's equation of motion. The force is a total of a conservative force( ), a pairwize 
random force( ) and a dissipative force( ).   

Fij
C

Fij
R Fij

D

 
m dv i

dt
= fi = Fij

C

j≠ i
∑ + Fij

R

j≠ i
∑ + Fij

D

j≠ i
∑     (1) 

 
The conservative force is a soft repulsion acting on particles and is given by 
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where,  is the maximum repulsion between particles i and j,  is a cutoff distance, 

, and 
aij rc

rij = ri − r j nij = rij /rij . A random force and dissipative force are given by 
 

        Fij
R
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⎨ 
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respectively, σ  is a noise parameter, γ  is a friction parameter, ω R  and ωD  are -dependent 
weight functions, v

r
ij = v i − v j and ζ ij  is a randomly fluctuating variable with Gaussian 

statistics. Espanõl and Warren showed that one of the two weight functions appearing in Eqn. 
(3) can be chosen arbitrarily[8]. There is also a relation between the amplitudes and . In 
summary  

kBT

 

      ω D (r) = ω R (r)[ ]2
=

1−
rij

rc
,       rij ≤ rc

     0,          rij > rc

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 ,       (4) σ 2 = 2γkBT

 
where  is a Boltzmann constant and kB T  is a temperature. Eqn. (4) is a fluctuation-
dissipation theorem. 
 In this study, we employed a spring force( ), because the surfactant is considered as a 
harmonic spring for the equilibrium bond distance  

Fij
S

rS

 

             Fij
S = −C 1−

rij

rS

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ nij      (5) 

where C  is a spring constant. 
 The advantage of the DPD method is to be able to put it in easily after the model of a 
complex fluid element. 
  
 

2.2  Simulation Conditions 
 
In this study, we decided the parameters referring to early studies of Yamamoto and 
Hyodo[6]. The surfactant is composed of three particles. One of them is hydrophilic 
group(h). The others are hydrophobic group(t1, t2). And we considered that water is one 
particle(w). The Interaction of each particle is equation (1). 
 
  Total number of particle in our simulation is 135,000 at a particle density ρ of 5. Among 
4,725 particles are surfactant molecules, and the others are water molecules. As the initial 
configuration, all of particles were located randomly. In the DPD simulation, it is general to 
make various physical quantities dimensionless. In this study, the units of mass, length, and 
energy are chosen by the particle mass m , the cutoff distance r  and the temperature , 
respectively. Also the spring constant is set at 100 and the bond distance is set at 0.86.The 
noise parameter 

c kBT

σ  is set at 3.0 and the friction parameter γ  is set at 4.5. The simulation box 

Multiscale simulation approaches for static and dynamic properties of macromolecular materials

915



is set to cubic. The dimensionless length of the box is 303. We used a periodic boundary 
condition, and Lees-Edwards boundary condition in shear flow.  
 
 
3. Results 
 
 The major finding is that there are two stages in the formation process of threadlike 
micelles(Fig.1). In the first stage, randomly dispersed surfactant molecules aggregated into 
several isolated spherical micelles in a short period corresponding to the diffusion time of the 
surfactant molecule up to 120 molecules per micelle. In the second stage, the spherical 
micelles, which were formed in the first stage, gradually connected each other and grew up to 
a rodlike and threadlike shape. 
 

 
Fig. 1: Snapshot of two stages. (a) the first stage (b) the second stage(note: Water molecules 
are not displayed and the molecules contained of some micelles are emphasized only.) 
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ABSTRACT 
 
 

Using ultrasonics for the plastification of thermoplastics has become a standard technique in 
the field of plastic welding. By the use of ultrasound it is possible to obtain reliable weld 
seams without heating the connecting parts to their glass transition temperature. We analyse 
the potential of ultrasound for low temperature plastification of PMMA both theoretically and 
experimentally. We investigate the ability of yield-stress fluid models to describe the 
plastification during application of ultrasound correctly. The deformation of the material is 
simulated by a particle based method, and the plastification behavior is modeled by a 
modified Bingham fluid. We discuss the general capability of particle simulation as a tool for 
simulating highly viscous flows on small length scales and propose solutions to overcome the 
major drawbacks, such as unacceptably small time steps and underestimated speed of sound. 
For the former we make use of scaling laws to achieve equivalent flow profiles and for the 
latter we adjust the ultrasonic boundary condition in order to obtain correct shear rates. 
Furthermore we present a strategy for a natural implementation of ultrasonic boundary 
conditions in fluid particle methods. Theoretical predictions are compared with new 
experimental data. 
 
 
1. Introduction 
 
Although widely-used in the field of plastic welding, the exact mechanism of ultrasonic 
plastification of thermoplastics is still not entirely understood. It has been reported that 
ultrasound is able to plasticize thermoplastics even below the glass transition temperature [1] 
which indicates that an increase in temperature due to frictional heating is not the only reason 
for plastification. From polymer melts it is well known that the shear rate has a strong 
influence on the viscosity. We thus propose that the ultrasound leads to such high shear rates 
and that the polymer softens even below the glass transition temperature. Simulations of the 
softening process may help to justify this assumption. We apply particle based fluid 
simulation methods which have become quite popular these days. One advantage is their 
ability to model free surface flows and large deformations, which is why they seem to be an 
ideal simulation tool for simulating the deformation during the ultrasonic plastification 
process. Dissipative Particle Dynamics (DPD) is one possible choice. It includes mesoscopic 
fluctuations in its momentum and energy equations. These fluctuations do not play a major 
role for the simulation of highly viscous fluids but the algorithm has shown to be stable and is 
thus a straight-forward approach for the simulation of the plastification process. 
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2. Simulation parameters and boundary conditions 
 
The standard DPD approach is as follows: a fluid or gas is represented by particles, each 
characterized by a position ri, velocity vi and in case of energy conservation also an internal 
energy εi. There are three different kinds of forces acting between the particles, namely the 
conservative force , the dissipative force  and the random force , where the indices 
identify the particles’ reference numbers. To reduce the computational effort, the range of the 
forces is limited to a cut-off length r

C
ijF D

ijF R
ijF

c. The principles of mass m, momentum p and energy 
conservation lead to the update equations 
 

i

i
i m

pr =& ,   ( )∑
≠

++=
ij

R
ij

D
ij

C
iji FFFp&    , (1) ∑

≠

=
ij

iji qε&

 
where qij denotes a generalized heat flux, including frictional heating as well as heat 
conduction [2]. The fluid’s equation of state (EOS) is defined by the conservative forces. We 
decide to follow Warren [3] and use a force given by 
 

ij
B

ji
AC

ij BA eF ))(( ωρρω ++=     (2) 
 

with local densities ρi, ρj, and the unit vector ijijij rr=e  pointing from particle j to particle i. 

The weighting functions ωA and ωB depend on the absolute distance rij and incorporate cut-off 
radii of  and . For force amplitudes of 1=A

cr 75.0=B
cr 0<A and , the resulting EOS 

was found to be  
0>B

 
)(2 2342 dcBrATkp B

cB +−++= ρραραρ     (3) 
 

with pressure p, virial coefficient 101.0=α , fit parameters c  and d , temperature T and 
Boltzmann constant kB [4]. Starting from this equation we determine appropriate values for A 
and B in order to fit the correct compressibility κ of PMMA. As a rule of thumb the cut-off 
length should be at least 3 times larger than the typical inter particle distance  [4]. 
For a cut-off radius of unity this leads to a minimum equilibrium density of 

B

3/1−≈ ρλ
27=ρ in DPD 

units. Unfortunately it is practically impossible to fit the real compressibility and sonic 
velocity due to the soft conservative forces. We therefore settle to match a dimensionless 
compressibility  
 

Tk
cBrATkp

TkTnk B

B
cB

TBPMMAB
DL

)23(2211 24
1 ρραρα

ρκ
κ −++

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

==−   (4) 

 
where n denotes the molecular number density of the polymer. We observe that, although the 
sonic velocity due to the conservative forces only is about three orders of magnitude too 
small, it is enhanced in turn by the high bulk viscosity arising from the dissipative forces 
described below such that the total sonic velocity is only one order of magnitude to small. 
Dissipative forces affect the viscosity of a DPD fluid, by leveling velocity differences of 
adjacent particles, and therefore lead to a balancing of the momentum distribution. Instead of 
using a dissipative force we use an energy conserving Peters-thermostat [5]. It relaxes the 
relative velocities of pairs of particles to a fraction ])(2exp[1 trijijij Δ−−= ωγα , where γij is an 
adjustable dissipation constant of the thermostat, ω is again a weighting function and Δt is the 
time step length. The thermostat redistributes the change in the kinetic energy equally to the 
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internal energy of both particles. Eqn. 5. shows the dependence of the viscosity on the time 
step and the dissipation constant γ  of the thermostat, where c1, c2 and c3 denote fit 
constants.  
 

( ) 322
1 ]2exp[1]exp[1 ctctc
t

c
+Δ−−+Δ−−

Δ
≈ γγη    (5) 

 
Note that by increasing the relaxation frequency 1/Δt we are able not only to increase the 
maximum viscosity, but also to obtain a wider viscosity bandwidth. Since we are aiming at 
simulating a softening process we choose a time step of  in DPD units which 
provides us with a viscosity-bandwidth of about two orders of magnitude. To simulate on 
micrometer length scales and viscosities of the order of 10

510−=Δt

5 Pa s as it is necessary for polymer 
flows we would need to resolve time steps of 10-13 s. This is obviously not pragmatic and we 
therefore propose to perform an equivalent flow simulation instead. The underlying idea is to 
set the ratio of clamping pressure and viscosity to the correct value by reducing the pressure. 
To describe the softening behavior of PMMA under the influence of ultrasound we introduce 
a modified Bingham model incorporating both yield-stress and shear thinning. The viscosity 
is a function of the temperature and the shear rate γ& , given by 
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ccγγτγηγη
&&
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Exceeding the critical values cc T  and γ&  for the shear rate and temperature respectively causes 
the viscosity to drop. The parameters t2 and  define the slope of this viscosity drop in 
dependence of 

aE
γ&  and T, respectively, while η1 and τ0  define the maximum viscosity. Shear 

thinning behavior is captured by the first term with the constant t1. In order to include this 
viscosity model in MDPD we replaced η in Eqn.5 by Eqn.6 and solved for the dissipation 
constant. This leads to a dissipation constant for the Peters-thermostat as a function of the 
respective particle’s temperature and shear rate. 
Walls in DPD simulations can be modeled by “frozen” particles which are placed behind the 
wall. We realized ultrasonic boundary conditions by introducing an oscillating velocity for the 
wall particles representing the vibration of the walls. Since the particles do not move, the 
ultrasonic coupling is of purely frictional character. 
 
 
3. Ultrasonic plastification simulations and experiments 
 
To investigate the softening process we use an ultrasonic welding machine ES 35 from 
Ultrasonics® with an ultrasonic frequency of 35 kHz and a maximum power of 1kW. An 
ultrasonic horn was designed with micro pillars at the tip to investigate the filling of the gaps 
due to the plastification process. For the simulations we use only a cut-out of this geometry 
(see Fig.1) to save simulation time. The wall particles are kept at a constant temperature of 
25°C to account for the large heat conduction of the brass horn. The oscillation direction is 
along the axis of the pillars (indicated by the thick double arrow).  
Fig. 1 shows the simulation and experimental results after one second of ultrasound with an 
intensity of 180 dB. As can be seen, the highest temperature is about 100°C. This shows the 
capability of ultrasound to plastify PMMA below the glass transition temperature of 120°C. 
Experimental observations support these simulation results. 
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Figure 1. From left to right: Test geometry; partially filled structure; simulation results for the 
shear rate and temperature distribution after application of ultrasound with an intensity of 
180dB for one second. 
 
 
Additionally, we can see a step in the flow profile (see arrows in Fig. 1) in both the 
simulations and the experiments. Apparently the high heat conduction of the wall prevents a 
boundary layer of the fluid from heating up to the critical temperature and thus inhibits faster 
flow.   
 
 
4. Summary 
 
We investigated ultrasonic plastification of PMMA, both experimentally and theoretically. By 
including a modified Bingham fluid into MDPD simulations it was possible to obtain 
qualitative agreement with experimental data. Our simulations indicate yielding due to high 
shear rates to be responsible for the decrease in the necessary process temperature for 
ultrasonic plastification compared to conventional plastification.  
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ABSTRACT

A method for simulating the dynamics of polymer–solvent systems is described.
The fluid is simulated via lattice Boltzmann and the polymer chains via Molecular
Dynamics. The two parts are coupled by a simple dissipative point–particle force,
and the system is driven by Langevin stochastic forces added to both the fluid and
the polymers. This method is applied to a semidilute system of chains of length
N = 1000. We observe the crossover from Zimm dynamics at short length and
time scales to Rouse dynamics at long length and time scales. Moreover, we find
“incomplete screening”, i. e. Zimm–like behavior at short times but large length
scales. This behavior can be nicely described in terms of the de Gennes picture,
which explains hydrodynamic screening as a result of entanglements. An analogous
simulation approach has been developed for electrostatics, where the interaction
is described by a dynamic Maxwell field coupled to the system of charges. This
method will be briefly outlined as well, with emphasis on the analogy between
hydrodynamics and electrostatics.

1. Hydrodynamic Interactions: A Computational Challenge

Complex fluids like colloidal dispersions or polymer solutions are characterized by
a huge difference in length scales and, even more importantly, time scales. The
solvent particles are much smaller, and they relax much more quickly, than the
solute. Indeed, for a single flexible polymer chain in dilute solution, the macro-
molecule’s relaxation time may be estimated by the scaling prediction of the Zimm
model [1],

τZ ∼
ηR3

kBT
, (1)

where η denotes the solvent viscosity, R the chain’s size (e. g. given by the gyra-
tion radius), kB the Boltzmann constant, and T the absolute temperature. The
underlying picture is a self–similar object relaxing on all length scales λ, where the
corresponding relaxation time is given by τ(λ) ∼ ηλ3/(kBT ), implying a dynamic
exponent z = 3. The longest relaxation time is given by the time which the object
needs to move its own size, and this is in turn governed by its diffusion constant D:
DτZ ∼ R2. Equation 1 then follows from the fact that the chain behaves essentially
like a Stokes sphere, as far as diffusion is concerned, D ∼ kBT/(ηR).
The important point for computer simulations is that Eq. 1 holds (approximately)
for the solvent particles as well; however, the relaxation is much faster. Thus,
a length scale ratio of, say, only ten would result in a chain relaxation which is
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roughly one thousand times slower than that of the solvent particles, or of the
monomers. Therefore simulations of polymer dynamics which aim at resolving the
full spectrum of relaxation times between the monomer scale and the macromolec-
ular scale are intrinsically expensive, and one would like to do this with a model /
method which is as simple and efficient as possible.
The most striking observation is that for dilute systems there are many more
solvent than solute degrees of freedom. Therefore the solvent should be reduced to
its bare essentials, which are just needed to reproduce the chain dynamics correctly.
The first important solvent property is the supply of thermal noise, such that one
is tempted to just simulate the solute particles via Brownian Dynamics,

~̇ri =
1

ζ
~Fi + ~fi, (2)

where ζ is the friction coefficient of monomer i at position ~ri, ~Fi the deterministic
force, and ~fi the Langevin noise. However, this simple scheme does not take into
account the hydrodynamic interaction, which is nothing but highly correlated mo-
tion of the Brownian particles, due to fast diffusive momentum transport through
the solvent, and of paramount importance for dilute systems. These correlations
are actually the reason for the Stokes–like behavior of the diffusion constant; with-
out them one would obtain Rouse–like scaling D ∝ N−1, where N is the degree
of polymerization. The so–called Schmidt number Sc = ηkin/Dm, i. e. the ratio
between kinematic viscosity (which is the diffusion constant for momentum) and
monomer diffusion coefficient, has typical values of 102 . . . 103 in dense fluids, and
can safely be replaced by Sc = ∞. Therefore, one should replace Eq. 2 by

~̇ri =
∑

ij

↔

µij
~Fj + ~fi, (3)

where the Langevin noise is now described by a huge correlation matrix, propor-

tional to the mobility matrix
↔

µij ,

〈

~fi(t) ⊗ ~fj(t
′)

〉

= 2kBT
↔

µij δ(t − t′). (4)

↔

µij can be calculated from hydrodynamics [1] with various degrees of accuracy
(Oseen–Tensor, Rotne–Prager–Tensor, etc.); the leading–order Oseen correlations
are long–ranged, decaying like 1/r. The Oseen tensor is nothing but the Green’s
function of the Stokes equation, in close analogy to electrostatics, where the
Coulomb potential is the Green’s function of the Poisson equation. This ma-
trix has been a severe obstacle to Brownian dynamics simulations, since simple
algorithms to treat it scale as N3, where N is the number of Brownian particles.
Recent progress has reduced this to roughly N log N [2]; however, this complicated
method has not yet found widespread use.
The “mesoscopic” approach instead resolves this problem by keeping the solvent de-
grees of freedom, but reducing them to just a means of momentum transport. Dif-
ferent methods (Navier–Stokes, Dissipative Particle Dynamics [3], Multi–Particle
Collision Dynamics [4], lattice Boltzmann (LB) [5]) have been invented and im-
plemented, and in the author’s opinion they are all very similar both in terms
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of philosophy and (probably) computational efficiency. Space restrictions do not
permit to describe any of these here. For complex fluids, one then couples one
such method to a particle description of the solute, making sure that the overall
momentum is conserved. An important point is that the solvent should be struc-

tureless, in order to make sure that the static equilibrium properties of the solute
are the same with and without solvent, such that the latter can be discarded for
equilibration.
The method developed in our group [6] is based upon a simple LB description for
the solvent, coupled dissipatively to a bead–spring system to describe polymers.
The latter is described by the equation of motion

m~̈ri = ~Fi − ζ
(

~̇ri − ~u (~ri)
)

+ ~fi, (5)

where ~fi is a standard Langevin noise, while ~u (~ri) is the solvent velocity at the
particle’s position, obtained via linear interpolation from the surrounding lattice
sites. The LB part is subjected to a fluctuating Langevin stress tensor, and ex-
ternal forces coming from the Brownian particles (these forces are determined via
interpolating back onto the lattice, plus the condition that the overall momentum
should be conserved). This system satisfies the fluctuation–dissipation theorem,
and faithfully represents hydrodynamic interactions on sufficiently large length and
time scales. The Schmidt number can be chosen as rather large (roughly 0.5×102),
by using a suitably large value for ζ .

2. Hydrodynamic Screening in Semidilute Polymer Solutions

A semidilute polymer solution (in good solvent) is characterized by the so–called
“blob size” ξ [7], which marks the onset of chain–chain interactions, and which
governs both the static crossover from self–avoiding walk (SAW) statistics at small
length scales to random walk (RW) statistics at large length scales, and the dy-
namic crossover from Zimm dynamics for small length scales to Rouse dynamics at
large length scales. This latter crossover, which is usually referred to by the term
“hydrodynamic screening”, had been poorly understood. An important landmark
was the observation by de Gennes [8] that the screening is due to entanglements,
which, in the present context, should however not be viewed as topological confin-
ing interactions as in reptation theory [1], but rather as the presence of chain–chain
collisions. In this picture, the blobs are viewed as “hooked up” in a temporary gel,
such that they provide Darcy–type friction to the solvent flow. Thus the viscous
stress η∇2~u in the Stokes equation should be augmented by an additional term
−ζblobcblob~u, where ζblob is the friction constant of a blob, and cblob the concentra-
tion of blobs. However, since cblob ∼ ξ−3, and ζblob ∼ ηξ (Stokes), this term can
also be written as (η/ξ2)~u. Balancing this against the viscous stress, one finds a
hydrodynamic screening length ∼ ξ. Therefore, there are no hydrodynamic cor-
relations beyond the length scale ξ, such that the dynamics should be Rouse–like
there.
Our simulation data [9] show that this picture needs to be completed in terms
of time scales. Though the Darcy picture of screening by the blobs turns out

Multiscale simulation approaches for static and dynamic properties of macromolecular materials

923



1 10
k2 t2/z

0.01

0.10

−l
n(

S
(k

,t)
/S

(k
,0

))
 / 

(k
2  t

2/
z )

early

late

Zimm
scaling

Rouse
scaling

kξ<1

z=4

z=3 t
2/z

k
2

−ln[S(k,t)/S(k,0)] / (k 2t2/z)

0.01

0.1

1                10

Figure 1: Single–chain dynamic structure factor S(k, t) for a semidilute polymer
solution (replotted data of Ref. [9]). The wave numbers k are restricted to the
regime kξ < 1, such that only correlations beyond the blob size are probed. For
pure Zimm scaling, the structure factor should be just a function of k2t2/3, while
it should only depend on k2t1/2 for pure Rouse scaling. The early and late times
refer to those which are smaller or larger than τξ.

to be essentially correct, one nevertheless needs to take into account that the
entanglements are not felt before the blob relaxation time τξ ∼ ηξ3/(kBT ), which
is the average waiting time until a chain–chain collision occurs. Before this time, an
initial “kick” will just propagate throughout the system, and just drag the chains
along. Therefore, the hydrodynamic interactions are unscreened on time scales
below τξ, even on large length scales well beyond ξ. This completes the de Gennes
picture, and explains the experimental observation of “incomplete screening” [10]
in a straightforward way.
It should also be mentioned that this study was quite non–trivial with respect
to computational demands: In order to resolve the SAW–RW crossover, and the
Zimm–Rouse crossover, we needed roughly thirty blobs per chain, plus roughly
thirty monomers per blob, such that we needed to simulate 50 chains of length
1000 in a box containing 883 LB lattice sites. This is the smallest system one can
study for this problem.

3. Maxwell Equations Molecular Dynamics (MEMD)

For hydrodynamic interactions, we started from the observation that the 1/r Oseen
tensor is just the Green’s function of a dynamic field theory (hydrodynamics) in its
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Figure 2: Electrostatic energy of a system of 4000 particles interacting via purely
repulsive Lennard–Jones (LJ) interactions, and electrostatics. The Bjerrum length
lB = e2/(4πǫ0kBT ) has the value 2.5 in units of the LJ parameter, which also
defines the unit of length for the lattice spacing a (parameter of the abscissa), and
the screening parameter κ of the artificial Yukawa field theory. The density has
the rather small value 10−2. In the continuum limit a → 0, the results all converge
to the exact value, which was obtained by accurate P3M simulations.

quasistatic limit, and that we can construct an efficient algorithm by going back
to the original dynamic field theory, i. e. by coupling the Brownian particles to the
Navier–Stokes velocity field, such that the interaction comes about by propagation
of the latter. Nothing prevents us from applying the same philosophy to the
Coulomb interaction between charged particles, which we couple straightforwardly
to a propagating Maxwell field. This idea has been put forward by A. Maggs, and
also pursued by us [11] (see also references in there). Since the approach has been
described in detail in Ref. [11], we wish to be brief, and just outline the main
features:
(i) Again the charges move in continuum space, while the electric and magnetic
fields live on a simple–cubic lattice. (ii) The charges are linearly interpolated onto

the nodes of the lattice, while current density ~j, electric field ~E, and magnetic vec-
tor potential ~A are objects associated with the connecting links. (iii) This scheme
allows a natural and straightforward discretization of the Maxwell equations. (iv)
The discrete analogs of the continuity equation, and Gauss’ law, are satisfied within
machine accuracy. (v) The equations of electrostatics ∇ · ~E = ρ/ǫ0, ∇ × ~E = 0
can be mapped onto a variational problem, where the electrostatic field energy
(ǫ0/2)

∫

d3~r ~E2 is minimized under the constraint of Gauss’ law. This is analogous
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to quantum–mechanical density functional theory, where the density functional
needs to be minimized. (vi) Replacing the minimization by some Hamiltonian dy-
namics is exactly the approach of Car and Parrinello; MEMD can be shown to be
formally very close related, with 1/c2 (c speed of light) an adjustable mass–like
parameter, whose value is irrelevant for the static averages in thermal equlibrium,
while c/v ≈ 20 (v particle velocity) seems to be sufficient to also obtain reasonable
dynamics. (vii) The distribution of particles onto lattice sites introduces an un-
physical self–interaction, which however can be approximately (within time step
errors) subtracted, using the appropriate lattice Green’s function. (viii) A combi-
nation with an artificial Yukawa–type field theory allows us to use the same trick
as for Ewald sums, i. e. the interactions are evaluated directly in real space for
short distances, while the Maxwell field propagation ensures proper Coulomb in-
teractions on the larger length scales. (ix) With this trick, it is possible to treat
dilute systems with a rather coarse grid, such that the method does not suffer from
inefficiency even in this limit. (x) Preliminary benchmarks seem to indicate that
the method is quite competitive with conventional electrostatics solvers like P3M,
while having very advantageous properties with respect to scaling, parallelizability,
and ease of implementation.
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ABSTRACT 
 
 

We present advances in Materials Studio ® [1] based methods and applications aimed at 
determining nanoscale structure and properties of polymer-based materials and composites. 
On the atomistic scale, an extension of the Monte Carlo based technique called Blends [1] for 
determining interaction parameters has been evaluated, which accounts for non-
configurational entropy contributions. On the mesoscale, we present applications to self-
assembling and composite systems using mesoscale and finite element methods. Using 
MesoDyn [1] we have simulated discrete temperature-dependent transitions of amphiphilic 
dendron molecules similar to those previously reported in experiments by Wiesner et al [2], 
and using Dissipative Particle Dynamics (DPD) [1] examined the dispersion of nanotubes in 
polymer composites. The thermal and electrical conductivity of these systems have been 
estimated using the MesoProp [1] finite element approach. Finally, a new mesostructure 
builder tool in Materials Studio is introduced, and applied to a study of phase-separation 
within diblock copolymer nanodroplets, comparing new DPD results with published 
MesoDyn simulations [3]. 
 
 
1. Determination of interaction parameters 
 
The effective interaction between different species as required by mesoscale methods such as 
DPD and MesoDyn, is often parametrized by the Flory-Huggins χ-parameter. The χ –
parameter may be estimated from the pure component solubilities using a mixing rule. Mixing 
rules, however, are empirical and not always available. A less empirical description is 
provided by the module Blends [1], a forcefield method that samples the energy of molecular 
pairs. Since every combination of species is considered, no mixing rule is required. Packing 
effects are accounted for through coordination numbers. Since only the energy of molecular 
pairs is required, Blends is a very efficient way to calculate χ-parameters. Although 
qualitatively useful, quantitative prediction is relatively poor. A possible improvement of the 
method is to include entropic contributions of the pair interactions into the parameter. This 
can be done in a straightforward manner, as follows. 
The χ-parameter, which in Blends is given by 
 

χij =½ β ((zij + zji) εij -zii εii - zjjεjj)    (1) 
 
is instead determined by 
 

χij =½ β ((zij + zji) aij -zii aii - zjjajj)    (2) 
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where aij is the free energy of a pair of molecules, given by the partition function, which itself 
results from the density of states g(ε) readily available from the simulation. 
 

β aij = - ln ∫ d ε gij  exp(- β ε)     (3) 
 
First results from calculations on a range of polymers are encouraging, as shown in Fig 1.  
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Figure 1: χ –parameters of a range of polymer blends, comparison of experiment [4] with 

simulations based on the energy, Eqn (1), and the new free energy approach, Eqn (2). 
 
 
2. Phase transitions in Dendron systems 
 
Wiesner et al [2] studied the self-assembly of amphiphilic dendrons extended with linear 
polyethylene oxide (PEO) chains and their ion complexes. It is thought that keeping the 
dendron core and linear PEO chain compatible allows for the combination of dendritic core-
shell and conventional block copolymer characteristics for complex mesophase behaviour. 
An unexpected sequence of crystalline lamellar, cubic micellar, hexagonal columnar, 
continuous cubic, and lamellar mesophases as is observed with increasing temperature. This is 
thought to be because dendrons introduce curvature to the interfaces of regular diblock 
copolymer phases. Greater understanding of the factors controlling the formation of these 
phases is the aim of our simulations. 
The very simple dendron model shown in Fig. 2 reproduces the micellar and lamellar phases 
of the experimental work but does not appear to properly produce the hexagonal or 
continuous cubic phases. We have therefore investigated alternative models including one 
using two beads to represent the branches and hydrophilic beads that extend further into the 
core of the dendron. As a result, a stable and structured bicontinuous phase is found, 
suggesting that the penetration of PEO units into the core of the dendron is a key structural 
element for obtaining the complex phase behaviour of these dendron systems. 
A comparison of the temperature at which we find the onset of a disordered phase in different 
types of dendrons also suggests the model is capturing the essential physics of this system. 
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Figure 2: A coarse-grained of lecule as input to MesoDyn. Each bead represents 

several monomers, and there are two bead types: PEO type (striped), and PE type (dotted). 
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 addition to the structural studies, the finite element method MesoProp [1] has been used to 

c
  
3. Dispersion of nanotubes in polymer composites 
 
Controlling the dispersion of carbon nanotubes (CNT
la
and simulation could guide experimental efforts by showing if it is possible to process CNTs 
in a specific environment, or whether significant enhancement of physical properties is 
possible with the addition of very small quantities of CNTs.  
We have previously [5,6] approached the problem of dispersion of CNTs in homopolymers 
from the perspective of  Flory-Huggins theory. Here we inve
films of block co-polymer melts may be used to control the dispersion of CNTs. Composites 
have been found to self-assemble into interesting patterns, including percolating networks at 
low fractions of CNT content. The MesoProp [1] approach was used to estimate the 
enhancement of important physical properties as a function of CNT concentration. 
 

Figure 3. Average electric conductance in the plane of thin film
n

correspond to the two directions in the plane. 
 

 conductance depends on percolation of nanotu
la
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on the underlying block copolymer morphology. CNTs are preferentially wetted by the A 
polymer, but bridges across the B polymer form to complete the network (Fig. 3). Several 
length scales are important, the ratio of CNT length to the distance between A- regions being 
the most important. In some cases, such as for A6B14, the distribution of A-polymer 
frustrates the formation of a percolated network of CNTs at concentrations below 5 vol%. 

 
 
4. Phase separation inside block copolymer nanodroplets  
 

he morphology of nano-structured soft materials depends not only on the self-assembly 
ers, but also on the assembly 

athways as determined by external fields, as well as the initial starting structures. A case in 

efects. As an 

actant, showing the isosurface of the 
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ABSTRACT 
 
 

A generalized coarse graining equation of motion was introduced based on the explicit 
Hamiltonian at the finer hierarchical level and the projection operator technique.  
Fundamental characteristics were briefly discussed in relation to practical hierarchical 
material simulations. 
 
 
1. Introduction 
 
Hierarchical simulation is promising to investigate structures, properties, preferable 
construction-processes etc. of practical complicated materials.  For homogeneous systems, 
reproduction of local structures/properties has been well studied via averaging the effects of 
surroundings.  Dielectric friction theory of ion transport is a typical example.  The reptation 
theory on the viscoelastic behaviour of concentrate polymer solutions is another one.  Our 
knowledge seems to be already well established to express hierarchical situations.  Once we 
simulate a structure or distribution functions at larger scale, we may reproduce local 
structures/properties by applying such theories under inmohogeneous surroundings.  Several 
mesoscopic simulations have been proposed and found to be useful.  Cooperative simulation 
at the atomistic and mesoscopic levels would be effective to practical investigations.  
However, the process on "coarse-graining" has to be investigated more explicitly.  
An example of cooperative simulation at the atomistic and mesoscopic levels for a hydrated 
polyelectrolyte membrane has previously been reported [1, 2]. This hierarchical simulation 
was performed on the mesoscopic structural formation based on the chemical formula of 
polyelectrolyte and deduced the electronic state of a hydronium ion in a hydrated membrane. 
This represents a practical example of an electronic structure calculation under a mesoscopic 
inhomogeneous environment.  
Unfortunately, the above procedure has still stayed at an example of “modeling” on 
mesoscopic structural simulations.  It is therefore required to develop coarse-graining 
methods which present definite relationship between atomistic and mesoscopic levels. We 
derived the equation of motion for the coarse-grained (CG) particles by using a projection 
operator method and calculated the mean force between CG particles by molecular dynamics 
simulations [3].  This would be a general basis for hierarchical procedure connecting 
molecular and mesoscopic simulations. 
The derived coarse graining equation of motion would be introduced in the present talk.  
Fundamental characteristics are briefly discussed in relation to practical hierarchical material 
simulations. 
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2. Generalized coarse-graining equation of motion 
 
We derived equation of motion for the CG particles by using projection operator method and 
calculated the mean force between CG particles by molecular dynamics simulations [3].  The 
idea of coarse-graining we adopt here is to divide the total Nt molecules into N groups (or 
clusters) which consist of nα, (α = 1, ..., N) molecules, and regard each molecular group as a 
CG particle.  To derive the equation of motion for the coarse graining particles, we introduce 
projection operator P and P-IQ=  and divide Liouville equation for ( )( )SSS tf ΓΓ ;ˆ ; the phase 
space density for CG particles. 
 

                ( )( ) ( )( ) ( )( )SSSSSSSSS tiLftiLftf
t

ΓΓΓΓΓΓ ;ˆ;ˆ;ˆ QP +=
∂
∂  ,                                         (1) 

 
where { }αα PR ˆ,ˆˆ ≡SΓ  denotes the positions and momenta of the center of mass of the CG 
particles. We obtained the equation of motion for the CG particles by integration of Eq. (1) 
with multiplying Pσ, 
 

   ( ) ( ) ( )∑∑∑∑∫∑
≠≠≠

Γ
+−−=

σα
σα

ση α β
αβαβση

σα
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QQQ FVFFFP
0

0
2

)(ˆ  ,               (2) 

 
where 

sΓ
L  denotes an average with fixed SΓ̂ . The meaning of the first, second and third 

terms are the mean force, the friction force and the microscopic (fluctuating) force, 
respectively. We also showed correspondence of Eq. (2) to Brownian dynamics and 
Dissipative Particle Dynamics (DPD).  In Eq. (2), all the terms are related to the atomistic 
information.  Then we performed molecular dynamics simulation with such constraint to 
calculate the mean force. All resulting forces show peaks at some distances and do not diverse 
even at close distance.  Because amount of the mean force should depend on the size of CG 
particles, it is appropriate to scale the force and distance.  The scaled mean forces show 
universality which correspond to that of the conventional conservative force in DPD. 
The projection operator method is a useful technique to eliminate first variables.  Although 
general formulation is given for the coarse-graining via the projection operator, explicit 
knowledge on the linkage between these formulations and conventional coarse-graining 
simulation methods has still not been satisfied.  Kampen and Oppenheim derived the equation 
for Brownian motion for single Brownian particle from first principles [4].  Coarse-graining 
equations for single chain in polymer melt [5], a one-dimensional harmonic chain [6] and 
three-dimensional harmonic lattices [7] have been also derived using the projection operator 
method.  These derivations are for specific systems, hence farther extension should be 
advanced.  Our resultant equation of motion, Eq. (2), shows explicit linkage between 
atomistic and mesoscale coarse-graining simulation methods. The information needed to 
execute the coarse graining simulations can be directory calculated via MD simulations [3]. 
 
 
3. Some fundamental characteristics of the generalized coarse-graining equation of 
motion 
 
The Liouville operator, L, in Eq. (1) is 
 

                            
∑∑

⎭
⎬
⎫

⎩
⎨
⎧

∂
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∂
∂
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Here, H is the Hamiltonian of entire system, rαi and pαi are the position and momentum, 
respectively, of each finer particle i constructing a CG particle α,   
 
              .and,, ∑∑∑ ≡≡≡

ii
i

i
i pPrR ii mMMm αααααααα                                     (5) 

 
The position and momentum of center of mass for a CG particle include all information about 
internal degrees of freedom here.  Equation (1) was derived via the projection operator to 
extract the information for the center of mass and to treat other degrees of freedom 
statistically.  If there is only one CG particle in the space, all the degrees of freedom can be 
separated into the motion of center of mass, orientations, and internal vibrations according to 
the standard theory of molecular vibration-rotation spectroscopy [8].  In this sense, the motion 
of center of mass is completely separated from orientations and internal vibrations.  On the 
other hand, orientations and internal vibrations commonly correlate as is well-known as the 
Coriolis interaction and the centrifugal distortion [8].  Applying the projection operator for 
extracting the motion of center of mass is trivial but for orientation or specific internal 
vibration is effective in the case of single CG particle.  We can therefore understand that the 
operation on Eq. (1) corresponds to coarse-graining to the effects of orientational motions and 
internal vibrations of other CG particles.  Extension to extracting another degree of freedom, 
e.g., orientation for dipole correlation etc., could be performed via almost identical procedure 
to reproduce Eq. (2).  We do not need to restrict the third term of Eq. (2) to only random force, 
because internal vibrations can be defined in each CG particle.  When we define the number 
of degree of freedom is not so large in each CG particle, we can keep an explicit relation 
between the equations of motion at the CG and finer hierarchical level.  This is an appropriate 
situation for trying practical hierarchical material simulation having the ability for both way 
transformations of information.  When we define the third term of Eq. (2), we can obtain 
conventional coarse graining equations of motion, e.g., Brownian dynamics or DPD.   
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ABSTRACT 
 

New methodology for the multiscale equilibration of chemically complex polymer melts has 
been proposed and verified by applying it to Poly(ethylene terephthalate) (PET) melt. The 
Iterative Boltzmann Inversion (IBI) [1] coarse-graining scheme has been applied to reduce the 
chemical complexity of the polymer. The resulting structurally simpler model faithfully 
retains the original interactions. This facilitates the process of generalizing connectivity-
altering Monte Carlo (MC) method, which has been used to equilibrate the Coarse-Grained 
(CG) PET model. The coarse-graining employed also reduces the number of degrees of 
freedom (d.o.f) in the system, which accelerates the calculations. The resulting method 
permits for thorough, multiscale equilibration of a 100-mer PET melt, and is applicable to a 
wide range of industrially important polymers. The CG melt density, characteristic ratio and 
other conformational properties agree with experiment. Topological analyses of the melt 
using CReTA [2] and Z [3] algorithms reveal that the melt is also well equilibrated with 
respect to entanglement density. 
 
 
1. Introduction 
 

PET-based resins are used for manufacturing fibers, films, drink bottles and replacements 
for commodity metals. Although a large number of experimental studies addressing structural, 
dynamic and barrier properties of PET is available, computational studies are scarce. 

Due to the multiscale nature of polymeric systems, their physical properties often depend 
on several length scales. Therefore, in order to extract meaningful properties from molecular 
simulations, the systems must be equilibrated at all length scales relevant to the problem.  

Pant and Theodorou developed an End Bridging Monte Carlo (EBMC) [4], which enabled 
drastic changes of chain connectivity in continuum MC simulations in a thermodynamically 
consistent fashion. Extensions of the method [5] have been effective in equilibrating highly 
entangled melts of linear and branched polyethylene (PE) as well as polypropylene, 
polydienes and polyethylene oxide. 

In order to adapt EBMC methods to a wide range of polymers with complicated chemical 
structures, of which PET is an example, we coarse-grain PET chains using IBI methodology.  

By testing the scaling properties of Kuhn lengths of subchains as proposed by Auhl et al 
[6]. we find that the resulting method thoroughly equilibrates a melt composed of 100-mer 
PET chains at all length scales. The CG melt density, characteristic ratio and other 
conformational properties agree well with experiment. Topological analyses of the melt using 
the CReTA and Z algorithms reveal that the melt is also well equilibrated with respect to 
entanglement density.  
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2. Methods 
 

2.1 Development of Coarse-Grained PET model 
 

Fig. 1 presents the mapping scheme for coarse-graining of one repeat unit of PET.  The 
proposed CG scheme reduces the number of d.o.f. per repeat unit, from 42 (united atom) to 9. 

The CG interaction potentials for PET have been calculated on the basis of the atomistic 
model using the IBI Method. The molecular dynamics (MD) simulations of the ethylene 
terephthalate dimer system have been undertaken in order to derive the CG interaction 
potentials. The IBI Method was effective in optimizing the intra- and intermolecular 
potentials and distributions obtained from the atomistic MD simulations have been 
reproduced in the CG MD simulations. 
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Figure 1. Schematic representation of the mapping scheme for CG PET. 
 
 
2.2 Coarse-Grained Polymer Equilibration 
 
The EBMC program developed by Pant and Theodorou [4] and Mavrantzas et al. [7] has 

been generalized here to handle linear polymers containing three bead types arranged in the 
(ABCB)nA sequence. Variable bond lengths have been implemented in MC moves. The EB 
move has been extended to enforce connectivity changes between monomers ABCB (Fig. 2). 

A system containing ten 100-mer (19230g/mol) random coils, with density 1.25 g/cm3 has 
been generated. The initial configurations contained many overlaps, which have been 
gradually eliminated by employing the EBMC method at constant volume. Next, in order to 
accelerate the volume equilibration, the system has been subjected to 1 ns of CG MD in the 
NpT ensemble. During this pre-equilibration process the average densities have converged to 
1.23±0.01 g/cm3. From this run six snapshots have been selected as starting configuration for 
the long EBMC runs. 
 
 

A

A

B

B
B

B
B

A AB B B
B

B

A

A

A

B

B
B

B
B

AB B B

B
A

BA
A

A

B

B
B

B
B

A AB B B
B

B

A

A

A

B

B
B

B
B

AB B B

B
A

BA

 
 
 
 
 
 
 
 
 
 

Figure 2. Schematic representation of EB move for PET chain. 
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3. Results and Discussion 
 

3.1 Chain Conformation 
 

Since small departures from equilibrium of the larger length scale features of chain 
conformations bring about only very small increase in free energy, the equilibration times of 
these features can be very long. Auhl et al. [6] characterize the equilibration of chain features 
within Kuhn and end-to-end length scales by the following Kuhn length-like quantity, lK(N), 
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where R(N) is the end-to-end distance of a subchain containing N beads and li is the bond 
length between beads i-1 and i. For well-equilibrated chains lK(N) increases monotonically 
with the subchain length and asymptotically reaches the chain characteristic ratio, C∞, times 
the mean bond length along the contour.  The quantity <R2(m)>/m, where m is the number of 
repeat units in the subchain, exhibits the same properties as lK(N). Fig. 3 presents <R2(m)>/m 
as a function of m for combined data of six independent runs. The characteristic ratio of 
subchains increases monotonically with the subchain length within the range 1<m<15. For 
15≤m≤100, it reaches a plateau whose value 140±0.5 Å2 corresponds to <R2>/Mw=0.68±0.002 
Å2 g-1 mol. The latter value is in very good agreement with the values derived on the basis of 
small-angle neutron scattering (SANS) measurements of PET melts. These results indicate 
that excellent equilibration of all PET chain conformations for m≤100 has been obtained. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. <R2(m)>/m for PET subchains as function of the number of repeat units in the 
subchain, m. The line corresponds to the experimental value of <R2>/Mw=0.69 Å2mol/g. 
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3.2 Entanglements in PET Melt 
 

The statistical analysis of topological constraints in the PET melt has been performed using 
programs CReTA and Z. Primitive paths in the CG PET melt contain a large number of kinks, 
indicative of topological constraints due to chain uncrossability. The Ne values, averaged over 
800 snapshots from a single MC run of length 800 million steps, using CReTA (31.8) and Z 
(35.8) algorithms, agree well with those obtained applying tube theory to rheological data for 
the plateau modulus, Ne=24-30. Also, the tube diameter, d, 33.5 Å (CReTA) and 35.8 (Z), 
obtained computationally as the Kuhn length of the primitive path, is in excellent agreement 
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with the literature value (d=35 Å). Next, Z algorithm has been applied to the analysis of the 
statistical properties of primitive path networks in all six MC runs. No significant differences 
in results from one and six runs are observed. These results indicate that very good 
equilibration of the melt topological structure has been achieved, as implied by the analysis of 
subchain Kuhn lengths. 
 
 
4. Conclusions 
 

A new method for the thorough, multiscale equilibration of chemically complex polymer 
melts has been proposed and verified by applying it to PET melt. First, the polymer structure 
is simplified by applying the IBI coarse-graining scheme. Next, the resulting coarse-grained 
polymer is equilibrated by connectivity altering MC scheme. The coarse-grained PET model 
accurately represents interactions of the atomistic original. Because of the generality of both 
schemes, the resulting method is applicable to a wide range of industrially important polymers. 

The analysis of the subchain Kuhn length indicates that the PET melt is adequately 
equilibrated within Kuhn and chain length scales. Also, very good conservation of potential 
energy and averaged end-to-end distance is observed during the simulation. Consequently, 
excellent equilibration at the level of topological constraints has been achieved as evidenced 
by highly consistent values of interentanglement spacings in all MC runs. All MC runs 
produce highly consistent end-to-end distances and densities, which agree well with 
experiment. 
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Effects of hydrodynamic coherence on DNA trans-
location: a Lattice Boltzmann-Molecular Dynamics 

multiscale approach
Efthimios Kaxiras

Harvard University, Lyman Laboratory - Department of Physics, 02138 Cambridge, USA

We have developed a multi-scale approach to the modeling of long biomole-
cule dynamics in the presence of a fluid solvent, which combines Molecular-
Langevin-Dynamics techniques with a mesoscopic Lattice-Boltzmann (LB) me-
thod for the solvent dynamics. A unique feature of the present approach is that 
hydrodynamic interactions between the solute biomolecules and the aqueous 
solvent are handled explicitly, and yet in a computationally tractable way due 
to the dual particle-field nature of the lattice Boltzmann solver. The suitability 
of the present LB-MD multiscale approach is demonstrated for the problem of 
DNA fast translocation across a nanopore. It is found that hydrodynamic interac-
tions result in a significant acceleration of the DNA translocation process.
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ABSTRACT 

 
 

Equilibrium distributions of entanglement spacing and number of entanglements per chain, 
and radial distribution of entanglement nodes are here investigated through primitive chain 
network simulations. Primitive chains are dispersed and connected in real space, and then 
equilibrated by force balance at entanglements, inclusive of osmotic forces due to density 
fluctuations. All known relaxation mechanisms such as reptation, contour length fluctuation, 
and constraint release are automatically accounted for in the simulation. It is shown that i) the 
length distribution of the entanglement spacing and the distribution of entanglement number 
per chain are consistent with theoretical predictions [J. D. Schieber, J. Chem. Phys., 118, 5162 
(2003)], and that ii) the radial distribution function for the entanglement network reveals a 
local condensation of the nodes, consistently with atomistic simulations [C. Tzoumanekas and 
D. N. Theodorou, Macromolecules, 39, 4592 (2006)]. The molecular weight corresponding to 
the mesh spacing of the simulated entanglement network is also discussed, by comparison 
with rheological data available in the literature. 
 
 
1. Introduction 
 
Though it has been established that the reptation picture can well explain entangled polymer 
dynamics [1], definition of entanglements is still under discussion. Recently, microscopic 
simulations [2-4] have offered valuable insights for bridging the microscopic description and 
the reptation-based description of the polymeric network. Multi-scale calculations combining 
the microscopic simulations with the models based on the reptation or sliplink [5,6] pictures 
appears then to be within reach. However, it has not yet been established how the 
microscopically obtained structure can be mapped onto the primitive chains employed in the 
reptation or sliplink pictures, since 3D structure of the entangled network has never been 
considered in the conventional entanglement based pictures [5]. In this study, we investigate 
entanglement network properties within the primitive chain network model [6], where many 
chains are dispersed in the simulation box (similarly to the molecular dynamics simulations) 
and dynamics of the entanglement points is ruled by force balances also accounting for the 
osmotic force due to the inter-chain interactions.  
 
 
2. Model and Simulation 
 
Polymers are replaced by consecutive segments which stand for elemental strands of the 
entanglement network. Based on the sliplink picture of entanglements, monomers can be 
exchanged between adjacent segments along the polymer. Differently from other sliplink 
models [5], the segments are also inter-molecularly connected in 3D space. Diffusion of 
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polymers is achieved by rearrangement of the interchain connections, which occurs when a 
chain end vacates or creates a sliplink. For the 3D sliplink motion and the monomer transport 
through sliplinks, i) elastic forces in each strand, ii) osmotic force due to chemical potential 
gradient, iii) drag force, and iv) thermal agitation are considered in the model. In the 
simulations we choose the average strand length a as the unit length and its Rouse relaxation 
time as the unit time. Usual periodic boundary conditions are employed, and the box size is 
123.  The average number density of segments in space is fixed at 10.  
 
 
3. Results and Discussion 
 
Fig.1 shows the equilibrium statistics of an entanglement network, with chains made up of 10 
segments (on average). The distribution of the number Z of segments per chain is consistent 
with a Poissonian distribution (Fig. 1a), and the segment-length distribution clearly shows an 
exponential tail. These results are consistent with Schieber’s theoretical prediction [7], and 
with microscopic simulations [3,4]. 
 

 
 

Figure 1. Distribution of (a) number of the segments per chain and (b) segment lengths. 
 
Fig.2 shows radial distribution of the entanglement nodes, where directly connected 
consecutive nodes are not counted. An accretion of the nodes below 0.5a is observed, 
reflecting a local clustering. This result also is consistent with very recent atomistic 
simulations [8].  
 

 
 
Figure 2. Radial distribution of entanglement nodes. 
 
Fig.3 shows model predictions of linear viscoelasticity of several monodisperse polymer 
melts. It should be noted that the entanglement molecular weight coming out from our 
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simulations (M/<Z> in Fig. 3) is 60-70% of the tabulated entanglement molecular weight in 
the literature. The reason for this is node fluctuation in 3D space [9], which is not considered 
in standard models [1], whereas it is automatically included in our simulations. 
 

 
 
Figure 3. Prediction of linear viscoelasticity for several polymers. 
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Challenges in Polymer Simulation
Florian Mueller-Plathe

Physikalische Chemie, TU Darmstadt, Petersenstr. 20, 64287 Darmstadt, Germany

Systematic coarse-graining procedures for polymer models have opened the 
way to new applications of simulation to real polymeric systems. These proce-
dures work for polymers both in the bulk and in solution, and they reproduce 
structural distributions as well as some thermodynamic properties. Future chal-
lenges lie in the correct prediction of dynamical and mechanical properties and 
in closing more of the length-scale and time-scale gaps between established 
models and simulation techniques.
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ABSTRACT 
 
The polymer-precursor synthesis of the amorphous ceramic a-Si3BB3N7 is modeled via a 
separation of time scale stepping stone approach. The resulting model is in good agreement 
with experimental measurements, in contrast to models based on quenching a Si3B3B N7 melt. 
 
 
1. Introduction and Modeling Procedure 
 
Si3BB3N7 is the parent compound of a new class of amorphous ceramics constituted of silicon, 
boron, nitrogen, and carbon, featuring a set of properties that is without precedent, and 
represents a prototypical random network based on chemical bonds of predominantly 
covalent character.[1,2] In contrast to many other amorphous materials of technological 
interest, a-Si3B3B N7 is not produced via glass formation, i.e. by quenching from a melt, the 
reason being that the binary components, BN and Si3N4, melt incongruently under standard 
conditions. Neither has it been possible to employ sintering of μm-size powders consisting of 
binary nitrides BN and Si3N4. Instead, one employs the so-called sol-gel route starting from 
single component precursors such as TADB ((SiCl3)(NH)(BCl2)). In order to determine the 
atomic structure of this material, it has proven to be necessary, to simulate the actual 
synthesis route.[2,3]  
 
Since the complete polymer-precursor route extends over many time and length scales, we 
have developed a stepping stone approach in order to simulate the synthesis as faithfully as 
possible.[4,5] Initially, precursor molecules are in solution with an excess of NH3, which 
react with each other based on the number of available reactive sites per molecule and their 
density within the solution. During this first linking stage, we take the likelihood that a given 
reaction attempt is successful to depend on whether a Si-N or a B-N bond is formed, with B-
N bonds being energetically preferred. The diffusion rates of the individual molecules being 
relatively high, local depletion effects in the precursor-concentration do not play a big role 
and thus the precursor density can be taken to be spatially homogeneous. The first reaction 
stage can therefore be modeled by generating lists of linked precursor molecules (nTADB < 10) 
according to these probabilities.  
 
However, once several precursor molecules have linked up to form a larger aggregate, this 
oligomer will move much more slowly compared to the remaining original precursor and 
NH3 molecules. Thus, the oligomers will become essentially stationary and serve as 
condensation centers for the still mobile reactants. This allows us to model this latter phase of 
the synthesis as a multiple condensation process of individual oligomers and monomers. At 
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the end of this stage, we are left with many isolated oligomers, which are now beginning to 
cross-link to form the polymer stage. This is modeled by placing the oligomers randomly on a 
lattice and shrinking the average distance until they can interact and form bonds. Finally, the 
pyrolysis stage is simulated by a Monte Carlo simulation at T = 1200 K, which stays well 
below the melting temperature (Tmelt (Si3BB3N7

cryst) ≈ 2500 K and Tmelt (Si3B3B N7
amorph) ≈ 2000 

K ) of the system but nevertheless eliminates most of the many dangling bonds still present in 
the polymer. During the pyrolysis simulations, the density of the polymer increases from ρ ≈ 
1.5 g/cm3 to the final value of ρE = 1.8 – 2.0 g/cm3. 
 
 
2. Results and Discussion 
 
Fig.1 shows a comparison of two models of Si3BB3N7, where model A (Fig. 1, left) has been 
generated by quenching a melt of Si3B3B N7,[3] and model E (Fig. 1, right) is the result of 
reproducing the precursor route,[4,5] respectively (notation according to ref. 3). One clearly 
recognizes that model E exhibits an inhomogeneous distribution of the cations, Si and B, 
within the random network on a sub-nanometer scale, while model A follows Löwenstein’s 
rule and shows a perfectly homogeneous cation distribution. NMR-experiments confirm that 
the actual ceramic also possesses such a cation clustering,[2] while ESI-studies (electron 
spectroscopy imaging) show that such cation clusters do not exceed a size of 1 – 2 nm.[2] 
Another important quantity, which is correctly reproduced by model E is the density of the 
ceramic, ρexp ≈ 1.9 g/cm3[2], in contrast to ρA = 2.6 – 2.9 g/cm3 for model A. Finally, the 
experimental pair correlation functions measured with neutron and X-ray scattering are in 
better agreement with the ones calculated for model E than with those of model A.[3] 
 

  
 
Figure 1 : Structure models of a-Si3BB3N7 generated by quenching from the melt (A, left) and 
by following the precursor-route (E, right). Si: red balls; B: blue balls; N: green balls. 
 
Analyzing the structure of the precursor-derived model shows that the low density of the 
ceramics is due to the formation of sub-nanometer size voids during the linking of the small 
oligomers to the full polymer, which have not vanished during the pyrolysis. On the other 
hand, our simulations of the quench from the melt show that these voids would not be present 
if the material had been heated up to the melting point (c.f. Fig. 2). In order to investigate the 
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stability of the voids during the pyrolysis process in more detail, we have performed long-
time simulations of distributions of large (Rvoid = 0.8 nm) and small (Rvoid = 0.3 nm) voids at 
temperatures ranging from 300 – 1500 K.[6] We find that the density of the ceramics 
increases very slowly (logarithmically) with time, with large voids surviving up to 1500 K. 
 

 
 

Figure 2: Distribution of voids of radii Rvoid for models of a-Si3BB3N7 generated by quenching 
from the melt (red) and following the sol-gel precursor route (blue), expressed in terms of the 
void volume normalized to the total volume of all voids in the model. 
 
Following the actual synthesis route in the computer allows us to judge the effects of various 
process parameters on the final product.[4,5] One particular point of interest is the cause of 
the inhomogeneous cation distribution in the ceramic, because energetically the 
homogeneous ceramics are lower than the inhomogeneous ones. Our investigations show that 
the decisive influence is the difference in reaction probability when forming a B-N vs. a Si-N 
bond. Similarly, the average size of the voids and their size distribution depends to some 
extent on the size of the oligomers at the moment when they start inter-linking. 
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ABSTRACT 

 
The broad spectra of length and time scales governing the properties of real-life 

polymeric materials necessitate the development of hierarchical analysis and simulation 
methods for the successful prediction of these properties. We discuss some examples aimed at 
overcoming the challenges of long length and time scales in polymer simulations. The first 
example concerns the prediction of volumetric, thermal, and conformational properties of 
long-chain polymer melts. A new class of connectivity-altering Monte Carlo (MC) algorithms 
affords rapid equilibration of atomistic or coarse-grained models at all length scales.  Direct 
topological analysis of the fully equilibrated melt configurations provides a tangible picture of 
entanglements.  As a second example we discuss properties in the configurationally arrested 
glassy state.  An energy landscape approach, wherein the polymer configuration is envisioned 
as fluctuating in the vicinity of local minima of the potential energy which depend on the 
spatial extent of the system, yields good estimates of the volumetric behaviour and elastic 
constants.  Structural relaxation can be tracked as a sequence of transitions between 
neighbouring minima, whose rate constants are estimated via transition-state theory.   
 
 
1. Equilibration and Entanglement Analysis of Long-Chain Polymer Melts 
 
The full equilibration of  detailed molecular models of long-chain polymer melts at all length 
scales has become possible through implementation of a class of connectivity-altering MC 
moves, such as end-bridging and double bridging, in combination with concerted rotation and 
reptation moves [1].  Connectivity-altering MC has been successfully applied to united-atom 
models of linear and long-chain branched polyethylene, polypropylene, cis-1,4 and 1,2-
polybutadiene, cis-1,4 and trans-1,4 polyisoprene, and poly(ethylene oxide).  For polymers of 
more complex chemical constitution, possessing large, inflexible moieties, a good strategy for 
equilibration is to first coarse-grain the atomistic model into a model involving many fewer 
degrees of freedom [2], equilibrate at the coarse-grained level using connectivity-altering 
moves, and then reverse-map to the atomistic level.   Recently, this strategy has been applied 
to poly(ethylene terephthalate) (PET) [3].  The original atomistic model has been reduced to a 
coarse-grained model with only nine degrees of freedom per repeat unit, using the Iterative 
Boltzmann Inversion method of Müller-Plathe et al. [4].  Connectivity-altering simulations of 
a PET melt of mean degree of polymerization 100 at 450 K and 1 atm yielded excellent 
equilibration at all length scales.  The mass density ρ of runs initiated at widely different 
configurations converged to a common value within 1% of experiment, and the ratio <R2>/M 
of mean squared end-to-end distance to molar mass was 0.68 Å2/(g mol-1), in good agreement 
with the range 0.61-0.69 Å2/(g mol-1) from small angle neutron scattering.  
Well-equilibrated atomistic or coarse-grained configurations from connectivity-altering 
Monte Carlo serve as excellent starting points for long molecular dynamics (MD) simulations 
aimed at the investigation of segmental and chain dynamics.  Segmental mean squared 
displacements and chain self-diffusivities obtained from MD clearly show the crossover from 
Rouse to reptation (entangled) dynamics with increasing chain length.  An alternative, and 
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computationally less expensive, route for the detection of entanglements is to subject the MC-
sampled configurations to topological analysis.   We have recently developed a Contour 
Reduction Topological Analysis (CReTA) algorithm for this purpose [5].  Keeping the chain 
ends fixed, the algorithm reduces the contour lengths of all chains in parallel by implementing 
linearizing moves around randomly chosen segments, subject to the condition that two chains 
can never cross each other. The chain diameters are  reduced during the latter stages of the 
procedure, so that the original configuration is ultimately mapped onto a set of zig-zag lines 
(“primitive paths”) coming together at points of topological constraint (“entanglements”).   
 
Table 1: Results of CReTA analysis. N , ESN , and Ne  are counted in skeletal carbons for PE 
and PB and in chemical repeat units for PET.  Experimental values are shown in parentheses. 

 
 
 
 
 
 
 
 

 

       N       ESN   ESd (Å)            Ne            d (Å)            p (Å)         
PE 500 28.3 14.0 75.1 (61.4) 38.4 (38.5) 1.53 (1.69) 

PE 1000 29.1 14.1 74.1 (61.4) 36.6 (38.5) 1.65 (1.69) 

PB 1000 80.9 18.7 178.7 (173.8) 42.3 (43.0) 2.59 (2.44) 

PET 100 3.5 14.2 7.9 (6.1-7.6) 33.5 (38.0-35.0) 1.82 (1.77-1.99) 

A wealth of statistical extracted from the CReTA process [5] is valuable in reconstructing 
entanglement networks for the mesoscopic simulation of the rheological properties of melts 
and of the large-deformation behaviour of solid polymers.  Quantitative measures of the 
entanglement structure are presented in Tab. 1 for two polyethylene (PE), a polybutadiene 
(PB), and a PET melt.  N is the mean chain length; d and Ne are the length and number of 
monomers, respectively, of a Kuhn segment of the primitive path; ESd and ESN are the mean 
distance and number of segments between successive entanglements; and p=M/(ρNA<R2>) is 
the packing length.  Values of d and Ne from CReTA agree with entanglement tube diameters 
and molecular weights from measurements of the plateau modulus.  The network mesh size, 
as reflected by ESd and ESN , is only 40% of the Kuhn length of the primitive path [5]. 
  
 
2. Volumetric properties, elastic constants, and structural relaxation in polymer glasses 
 
Although significant advances have been achieved in modelling ageing and deformation of 
polymer glasses macroscopically, connecting these properties to the chemical constitution, 
formation and processing history of a glass is still a challenge, because of the extremely broad 
spectra of characteristic times governing molecular motion in the glassy state. 
Progress in the simulation of physical ageing and deformation of glassy materials can be 
achieved based on the idea that the configuration of a glass is trapped in the vicinity of a local 
minimum of the energy (inherent structure [6]), undergoing infrequent transitions to 
neighbouring minima across free energy barriers that may vary widely in height.  This 
“energy landscape” picture focusses on the determination of representative energy minima 
and of the transition paths leading from those to neighbouring minima in the 
multidimensional configuration space of the glass.   Thermodynamic properties and elastic 
constants in the individual energy minima are estimated by invoking a quasiharmonic 
approximation for the energy, and the corresponding properties of the glass are obtained 
through arithmetic (“quenched”) averaging over all minima.  Rate constants for transitions 
from a minimum to neighbouring minima are estimated using the principles of 
multidimensional transition-state theory [7] and the temporal evolution of the system, in the 
presence or absence of external stress, is tracked by Kinetic Monte Carlo (KMC) as a 
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succession of transitions between the minima.  Such “quasi-MD” simulations can deal with 
arbitrarily slow transition rates and thus overcome the problems of “brute-force” MD. 

Application of this approach to glassy atactic polystyrene (PS), using a united-atom model, 
has led to excellent predictions for its volumetric properties.  Uniaxial tensile tests on PS 
based on the landscape approach yielded a Young’s modulus E=3.9 GPa and a Poisson ratio  
ν=0.35, which compare well with E=3.2-3.4 GPa and ν=0.32  reported experimentally. 

Fig.1 displays the self-part of  the intermediate scattering function of a Lennard-Jones (LJ) 
glass, as obtained through a quasi-MD simulation. This function, which can be obtained 
experimentally by incoherent quasielastic neutron scattering, characterizes structural 
relaxation in the glass.  One can discern an initial “fast β” decay, which is due to motion about 
an inherent structure and occasional fast transitions to close-lying neighbouring minima.  
Then, for several decades in time, Ss remains pretty much constant at a nonzero value 
(“nonergodicity parameter”).  Finally, it drops along a long-time “α relaxation” process 
involving a cascade of transitions which, in the depicted case, ultimately leads to 
crystallization of the glass.  The appearance is strikingly similar to that of  Ss(q,t) of  
supercooled liquids obtained by MD at temperatures close to the glass temperature. 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The caption should be provided below each figure. 
 
 
Figure 1. Self-part of the intermediate scattering function Ss(q,t) from quasi-MD simulation of 
structural relaxation in a LJ glass at P=1.003 ε/σ3 and T=0.415 ε/kB.  The glass was obtained 
by quenching from the melt at a rate T =-0.184 ε/(k& Bτ). τ =(mσ2/ε)1/2 is the LJ unit of time. 
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ABSTRACT

We performed mesoscopic dynamics simulation for micellar structures in amphiphilic di-
block copolymer solution systems. We employed the free energy functional model for block
copolymer blends and the stochastic dynamic density functional equation. Our simulation
model reproduces micellar structure formation process from initial homogeneous state.

1. Introduction
The amphiphilic block copolymers form various interesting micellar structures such as

spherical micelles, cylindrical micelles and vesicles in selective solvents [1].
The particle model simulations (for example, Brownian dynamics simulations [2] or dis-

sipative particle dynamics simulations [3]) have been done to study the dynamics of micellar
structure formations. For example, the following mechanism of vesicle formation from ho-
mogeneous state has been observed. First, small spherical micelles are formed rapidly. Next,
the small micelles aggregate and form larger micelles (cylindrical micelles or disk like mi-
celles). Finally the large disk like micelles close up spontaneously to form vesicles.

On the other hand, most of continuum model simulations are limited to equilibrium sim-
ulations [4,5]. Recently He and Schmid performed external potential dynamics simulations
for vesicle formation process in block copolymer solutions [6], but their result does not agree
with the results of particle simulations. This suggests that we need more improved contin-
uum �eld model for dynamics simulations.

In this work, we propose the mesoscopic dynamics simulation model based on the density
functional theory. Our model reproduces the micellar structure formation dynamics which is
qualitatively same as the particle simulations.

2. Theory
AB diblock copolymer solutions can be modelled as AB diblock copolymer / S solvent

blends. In the density functional theory, the free energy for the system is expressed as the
functional of density �elds of each components (φA(r), φB(r), and φS(r)). In this work we
use the following free energy functional [5] (for simplicity, we set kBT = 1 hereafter).

F =
∑

i (=A,B)

∫
dr 2fiCiiψ

2
i (r) lnψi(r) +

∫
dr 2ψ2

S(r) lnψS(r)

+
∑

i,j (=A,B)

∫
drdr′ 2

√
fifjAijG̃(r − r′)ψi(r)ψj(r

′)

+

∫
dr 4

√
fAfBCABψA(r)ψB(r) +

∑

i (=A,B,S)

∫
dr

b2

6
|∇ψi(r)|2

+
∑

i,j (=A,B,S)

∫
dr

χij
2
ψ2
i (r)ψ2

j (r) +

∫
dr
P (r)

2

[
ψ2
A(r) + ψ2

B(r) + ψ2
S(r)− 1

]

(1)
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where ψi(r) ≡
√
φi(r), fi is the block ratio of the i-subchain, b is the Kuhn length, and χij

is the Flory-Huggins χ parameter. Aij andCij are constants determined from the architecture
of the diblock copolymer. G̃(r−r′) is the Green function which satis�es [−∇2 +λ−2]G̃(r−
r′) = δ(r−r′) (λ is the cutoff length for the interaction) [7]. P (r) is the Lagrange multiplier
which corresponds to the incompressible condition (φA(r) + φB(r) + φS(r) = 1).

It is emphasised that Eqn (1) is valid for strong segregation region at least qualitatively
[5]. This is quite important because the vesicles are observed in the strong segregation region.
To study various micellar structures, including vesicles, we need to use appropriate free
energy functional.

We use the following stochastic dynamic density functional equation [8] for time evolu-
tion.

∂φi(r)

∂t
= ∇ ·

[
φi(r)

ζi
∇ δF

δφi(r)

]
+ ξi(r, t) (2)

where ζi is the friction coef�cient of the i-monomer and ξi(r, t) is the Gaussian white noise
which satis�es following relations.

〈ξi(r, t)〉 = 0 (3)

〈ξi(r, t)ξj(r′, t′)〉 = −2β̃−1δij∇ ·
[
φ(r)

ζi
∇δ(r − r′)

]
δ(t− t′) (4)

where β̃−1 is the magnitude of the noise and is proportional to kBT (= 1). Here we emphasise
that β̃−1 is not equal to kBT , but is determined from the characteristic (coarse-grained) time
scale of φi(r) [8]. For simplicity we set ζi = 1/2 hereafter. Eqn (2) can be rewritten as
follows by using φi(r) = ψ2

i (r).

∂φi(r)

∂t
= ψi(r)∇2µi(r)− µi(r)∇2ψi(r) + ξi(r, t) (5)

where µi(r) ≡ δF/δψi(r) is the chemical potential with respect to ψi(r). µi(r) can be
calculated from ψi(r) by using Eqn (1) (see also Ref [5]). The advantage of using Eqn (5)
is that µi(r) does not have singularity at ψi(r) = 0 where δF/δφi(r) has singularity at
φi(r) = 0. Thus we can perform stable simulations for strong segregation systems.

3. Simulation
Simulations can be done by desecritizing Eqn (5) and solving it numerically. We em-

ployed partial implicit scheme to improve numerical stability [5].
Parameters were set as follows. The polymerization index of diblock copolymerN = 10,

the block ratio fA = 1/3, fB = 2/3, the Kuhn length b = 1, the cutoff length for long range
interaction λ = 5, the volume fraction of diblock copolymers φ̄p = 0.2, Flory-Huggins χ
parameters χAB = 2.5, χAS = −0.5, χBS = 5 (The A subchain is hydrophilic and the B
subchain is hydrophobic), and the magnitude of the noise β̃−1 = 0.3125. The initial state
is homogeneous state (φA(r) = fAφ̄p, φB(r) = fBφ̄p, φS(r) = 1 − φ̄p) and the boundary
condition is the periodic boundary condition.

Simulations are carried out for two dimensional systems as well as the three dimensional
systems. The snapshots of the simulation for the three dimensional system (system size 243,
lattice points 483, time step ∆t = 0.0025) is shown in Fig 1. We can observe the vesicle is
formed from the homogeneous initial state. The vesicle formation mechanism is similar to
the result of the particle simulations; At the initial stage, small micelles are formed rapidly.
Then micelles grow by collision and coalescence process. At the late stage, the disk like
micelle close up to form a vesicle. We also obtained various micellar structures by changing
parameters such as φ̄p or χBS .

It is noted that at the late stage of micellar formation processes, the noise play an im-
portant role. As observed in Fig 1, the noise used in this simulation is large and micellar
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Figure 1: Snapshots of micellar structures in the amphiphilic diblock copolymer solution
(t = 62.5, 625, 56250, from left to right). The grey surface is the isosurface for φB(r) = 0.5.

structures were �uctuating strongly. Without the effect of the noise, the Brownian motion of
small spherical micelles cannot be observed, and thus no larger structures are formed.

4. Conclusion
We proposed the mesoscopic continuum model for dynamics simulations of micellar

systems. We employed the free energy functional model (Eqn (1)) based on the density
functional theory and the stochastic dynamic density functional equation (Eqn (5)). We car-
ried the numerical simulations and found that our model reproduces the micellar formation
dynamics which is consistent with the particle model simulations.
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ABSTRACT 
 
 

A model based on both the Hu-Larson model for droplet flow and the stress-diffusion 
coupling model for gel dynamics is proposed for the drying process and stain formation of 
polymer solution droplets having mixed solvents of high volatile / low surface tension and 
low volatile / high surface tension. The model is analized theoretically and simulated by 
multi-physics techniques. Results show that the flux of solute from the center to edges of a 
droplet in the evaporation process has a mimimum value at some mixing ratio of solvents, 
where a stain becomes a cap shape. The results reproduce experimentally observed ones, 
which are also described in this paper, for the drying process of polystyrene polymer solution 
drops about 100 m radius having anisole / etylacetate mixed solvents, whose evaporation 
rates are quite different, placed on a hydrophobic substrate. 
 
 
1. Introduction 
 
 How to control the shape of the solute deposit in the drying process of a polymer solution 
drop on a substrate is an important problem in the ink-jet printing. In the case of dilute 
solution, a commonly observed phenomena is the ”coffee stain” : the evaporation of solvent 
induces an outward flow and creates a ring-like deposit after drying. [1] The outward flow is a 
result of the combined action of the increased evaporation rate at the droplet edge, and contact 
line pinning caused by solute deposition near the edge (self-pinning). [2] De Gans et.al. 
showed that when a polymer solution is dried on a glass slide coated with hydrophobic 
materials, it leaves a small dot after the evaporation. [3] They observed that the dots have 
small dimple in the center, the size of which can be changed by solvent. They, however, did 
not conduct any quantitative study for the phenomena.  
 In the previous paper [4], we show that, when the solvent is pure anisole, the shape of the 
final polymer deposit changes from concave dot for dilute cases, to flat dot for 5wt% initial 
density case, and then to concave dot again in dense cases with the increase of the initial 
polymer concentration. This shape change is caused by the gradual transition from the solute 
piling mechanism proposed by Deegan et.al. to the crust buckling mechanism proposed by de 
Gennes and Pauchard. [5] 
 Here, we studied the shape change, flow and contact line motion in drying process of 
polystyrene polymer solution drops of 0.5wt% about 100 m radius placed on a hydrophobic 
substrate  having anisole/etylacetate mixed solvents, where anisole is a low volatile and high 
surface tension solvent, etylacetate is a high volatile and low surface tension solvent and these 
evaporation rates are quite different. A model based on both the Hu-Larson model [6] for 
droplet flow and the stress-diffusion coupling model for gel dynamics [7] is proposed for the 
drying process and stain formation of polymer solution droplets having mixed solvents of 
high volatile / low surface tension and low volatile / high surface tension. The model is 
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analized theoretically and simulated by multi-physics techniques of combining a flow model 
and a gel model. 
 
 
2. Experiment 
 
 The drying process of polystylene polymer solution 0.5wt% drops of various 
anisole/etylacetate mixed solvents are observed experimentally, where the equilibrium contact 
angle for each solvent are  85 degree for anisole and 55 degree for etylacetate. The drying 
process generally takes place in three stages. First, the droplet evaporates keeping the contact 
line fixed and the contact angle decrease. Second, when the contact angle reaches to a 
receding contact angle, the droplet starts to shrink with a receding contact angle. Finally the 
contact line pinned again by self-pinning, and the droplet starts to be deformed from a 
spherical cap shape. Fig.1 shows the time evolution of a droplet volume (Fig.1(a)) and a 
contact angle (Fig.1(b)) related to time. The evaporation rate becomes small as the anisole 
component becomes rich. In the anisole rich region, the evaporation becomes uniformly small, 
while in the etylacetate rich region, the two step evaporations can be observed, where the 
evaporation rate changes drastically. The evaporation rates for pure anisole solution and pure 
etylacetate solution are about 

! 

0.5µm /sec  and 

! 

12µm /sec . The receding contact angle becomes 
large as the anisole component becomes rich, where the receding contact angle for each 
solvent are 70 degree for anisole and 40 degree for etylacetate. When the mixed ratio of 
etylacetate is about 90%, both a ring-like deposit and a dot-like deposit in it can be observed 
together. 

 
Fig.1 : The time evolution of a droplet volume ((a) left) and a contact angle ((b) right) related 
to time. 
 
 Fig.2(a) shows the height profile of a stain after evaporation. As the mixed ratio of 
etylacetate increases from pure anisole in the initial density 0.5wt% case, the dimple of the 
final polymer deposit decreases, and the shape becomes flat, when anisole/etylacetate mixting 
ratio is about 60%/40%. This change is considered to be caused by the temperature 
Marangoni flow induced by high volatile solvent conponent and the density Marangoni flow 
induced by the difference of surface tensions of mixed solvents. In the other hand, the mixed 
ratio of etylacetate increases between 60% and 80%, the dimple of the final polymer deposit 
increases again. This change is considered to be caused by increasing of the outward flow 
induced by high volatile solvent. Fig.2(b) shows the averaged polymer volume fraction at the 
self-pinning time related to the mixed ratio of solvent. The averaged polymer volume fraction 
has a maximum value when the anisole ratio is about 60%, which almost agrees with one 
where the shape of dot becomes a cap-like shape. This means the flow field during the 
receding process before the self-pinning time is important to explain the difference of stain 
shapes. 
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Fig.2 : The height profile of a stain after evaporation ((a) left) and an averaged polymer 
volume fraction at the self-pinning time related to the mixed ratio of solvent. ((b) right) 
 
 
3. Theoretical Analysis and Simulation 
 
 We analyze and simulate the flow of polymer solute in the evaporation process of polymer 
solution drops using the competetion model of the Marangoni flow and the outward flow, 
each model is based on the Hu-Larson model [6], and the shape change in the evaporation and 
gelation process after selfpinning using the stress diffusion coupling model of gel dynamics 
based on the two fluids model of polymer and solvent. [7] 
 According to the Hu-Larson model, the averaged pressure difference related to the outward 
flow 
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between the center and edge of a drople is described as follows. 
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where 

! 

" is viscosity, 

! 

"  monomer size, 
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R droplet radius, the contact angle 
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"  is a function of 
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 of mixed solvent. The averaged evaporation rate 
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 is described by  
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Jav " CaniJani + (1#Cani)Jety .                                                 (2) 
where 
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J
ani

 and 

! 

Jety  are evaporation rates for anisole and etylacetate. In the other hand, the 
averaged pressure difference related to the thermal Marangoni flow 
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where 

! 

"   is surface tension which increases as the temperature 

! 

T  on surface decreases. 

! 

"T  is 
temperature difference between top of a droplet and the substrate, 

! 

k  the thermal conductivity, 

! 

L  the latent heat, and 

! 

"  is the mass density. 
 Fig.3 shows the pressure difference between the center and edge of a drople related to the 
mixing ratio of solvent calculated by eqs.(1) and (3), where a dashed line and a dotted line 
describe the contribution of the outward flow and the Marangoni flow each other. Results 
show that the flux of solute from edge to the center of a droplet in the evaporation process has 
a maximum value at some mixing ratio of solvents, where a stain becomes a cap shape. The 
results reproduce experimentally observed ones. 
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Fig.3 : Pressure difference between the center and edge of a drople related to the mixing ratio 
of solvent, where a dashed line and a dotted line describe the contribution of the outward flow 
and the Marangoni flow each other. 
 
 These results are compared and discussed with the simulation results of the thermal 
Marangoni flow and the time evolution of solute distribution by the finite element method. 
Fig.3 shows the outward flow field during the evaporation process for droplets having 30 
degree contact angle and 90 degree contact angle by FEM each other. 

 
Fig.4 : Pressure difference in a droplet related to mixing ratio and flow field in evaporation 
process by FEM simulation. 
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