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Foreword 
 
Computational modeling of materials behavior by multiscale materials modeling (MMM) 
approaches is becoming a reliable tool to underpin scientific investigations and to complement 
traditional theoretical and experimental approaches of component assessment. At transitional 
(microstructural) scales continuum approaches begin to break down and atomistic methods 
reach inherent limitations in time and length scale. Transitional theoretical frameworks and 
modeling techniques are developed to bridge the gap between the different length scales. 
 
Industrial success in high technology fields relies on the possibility to specifically engineer 
materials and products with improved performance. The success factor is the ability to make 
these material related developments timely at relatively low-costs. This demands not only the 
rapid development of new or improved processing techniques but also better understanding and 
control of material chemistry, processing, structure, performance, durability, and their 
relationships. This scenario usually involves multiple length and time scales and multiple 
processing and performance stages, which are usually only accessible via multi-scale / multi-
stage modeling or simulation. 
 
In high-payoff, high-risk technologies such as the design of large structures in the aerospace and 
nuclear industries, the effects of aging and environment on failure mechanisms cannot be left to 
conservative approaches. Increasing efforts are now focused on advancing MMM approaches to 
develop new material systems components and devices. Appropriate validation experiments are 
crucial to verify that the models predict the correct behavior at each length scale. Thus, one of 
the advantages of these MMM approaches is that, at each scale, physically meaningful 
parameters are predicted and used in models for subsequent scales, avoiding the use of 
empiricism and fitting parameters. 
 
Recent interest in nanotechnology is challenging the scientific community to design nanometer 
to micrometer size devices for applications in new generations of computers, electronics, 
photonics or drug delivery systems. These new application areas of multiscale materials 
modeling require novel and sophisticated science-based approaches for design and performance 
evaluation. Theory and modeling are playing an increasing role to reduce development costs and 
manufacturing times. With the sustained progress in computational power and MMM 
methodologies, new materials and new functionalities are increasingly more likely discovered by 
MMM approaches than by traditional trial and error approach. This is part of a paradigm shift in 
modeling, away from reproducing known properties of known materials towards simulating the 
behavior of hypothetical composites as a forerunner to finding real materials with these novel 
properties. 
 
The MMM 2006 conference provides an international forum for the scientific advances of 
multiscale modeling methodologies and their applications. 
 
I would like to thank the members of the international advisory committee, the local program 
committee and particularly the organizing team, the symposium organizers and the session 
chairs and the University of Freiburg for their engagement and support. Without their hard work 
and their devotion of time and ressources, the Third International Conference Multiscale 
Materials Modeling would not have been possible.  
 
Finally, I would like to thank our conference sponsors for their financial support: The German 
Research Foundation DFG, Accelrys Inc., Plansee S.E. and the Ministry of Science, Research and 
Art, Baden-Württemberg. 
 
Peter Gumbsch 
Conference Chair 
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Multiscale Model of Morphogenesis
Mark Alber

Department of Mathematics, University of Notre Dame, 255 Hurley Building, 46556-4618 Notre Dame, United 
States of America

In this talk we present the foundation of a unified, multiscale, object-oriented, 
three-dimensional biomodelling environment, which allows one to integrate 
multiple submodels at scales from subcellular to those of tissues and organs. 
Our current implementation combines a modified discrete model from statis-
tical mechanics, the Cellular Potts Model, with a continuum reaction–diffusion 
model and a state automaton with well-defined conditions for cell differenti-
ation transitions to model genetic regulation. This environment allows one to 
rapidly and compactly create computational models of a class of complex de-
velopmental phenomena. To illustrate model development, we describe simu-
lations a simplified version of the formation of the skeletal pattern in a growing 
embryonic vertebrate limb [1,2] as well as somite formation.

1. Chaturvedi, R., C. Huang, B. Kazmierczak, T. Schneider, J. A. Izaguirre, T. Glimm, 
H.G.E. Hentschel, J. A. Glazier, S. A. Newman, M. Alber [2005], On Multiscale Ap-
proaches to 3-Dimensional Modeling of Morphogenesis, Journal of the Royal 
Society Interface 2 3, 237-253.

2. Cickovski, T., C. Huang, R. Chaturvedi, T. Glimm, H.G.E. Hentschel, M. Alber, J. A. 
Glazier, S. A. Newman, J. A. Izaguirre [2005], A Framework for Three-Dimensional 
Simulation of Morphogenesis, IEEE/ACM Transactions on Computational Biolo-
gy and Bioinformatics 2 4, 273-288.
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Erythrocyte membrane properties revisited
Thorsten Auth 1, Nir Gov 1, Sam Safran 1

1Weizmann Institute of Science, Department of Materials and Interfaces, 76100 Rehovot, Israel

A fundamental understanding of the shape and fluctuation behaviour of the 
human erythrocyte is important for applications to medicine and because 
erythrocytes  which are easily isolated in large quantities  can serve as relatively 
simple model systems for more complex cells. Their simplicity arises from the 
fact that the mechanical properties of the whole cell are completely governed 
by the properties of the plasma membrane and the adjacent spectrin network. 
This simplification allows the theory to focus on modelling the composite cell 
membrane, However, because the total number of molecules exceeds it is not 
feasible to simulate a complete cell on a molecular level. Multi-scale models 
that include selected molecular information and which are still able to deal with 
length scales of the size of the cell are currently the most promising approach 
for theoretical understanding of the system.

We present a model that couples the fluctuations of the fluid, lipid bilayer with 
those of the adjacent solid-like, polymerized membrane by excluded volume 
interactions. The main focus of our research is to examine the consequences of 
the coupling of these two different types of membranes in order to predict the 
thermal fluctuations of the erythrocyte membrane. We compare our data with 
the results of light scattering measurements of the fluctuation spectrum. In a 
second study, we explicitly model the spectrin filaments as polymer chains. We 
find an average pressure that acts on the membrane that can be used to cal-
culate the average membrane shape. In addition, we investigate the effects of 
the ATP concentration on the coupling and on the resulting fluctuations of the 
coupled lipid and spectrin membranes. Our studies are motivated by the fact 
that changes in the ATP concentration, which control single-molecule effects, 
can lead to a significant increase in the amplitudes of the membrane fluctua-
tions.
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Active Self-Organization Of Myosin II Motors And Actin 
Filaments

Anne Bernheim-Groswasser
Ben-Guiron University of the Negev, P.O. Box 653, 84105 Beer-Sheva, Israel

The cytoskeleton plays an important role in many subcellular processes as cell 
division, and cell locomotion. Depending on the specific task, the appropriate 
cytoskeletal structure has to be formed. Biophysical studies have indicated that 
the formation of cytoskeletal structures can be achieved by self-organization 
of cytoskeletal components. Switching between different such structures could 
thus be obtained by simple modifications of the participating components, i.e., 
the formation of the contractile ring during cell division from an initially homo-
genous isotropic actin cortex could have its origin in the activation of molecular 
motors and an increased polymerization and depolymerization activity of actin 
filaments. Here we study the active self-organization of actin filaments by my-
osin II molecular motors from an isotropic solution of actin filaments or mono-
mers. Depending on the system composition rings, bundles or active networks 
are formed. Similar substructures are also observed in vivo.
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Electromechanical coupling in membranes
William Brownell

Baylor College of Medicine, Department of Otolaryngology - H&N Surgery, One Baylor Plaza, 77030 Houston, 
United States of America

Biological membranes are a rich mixture of lipids, proteins, and other molecules. 
Lipids are about 100 times more numerous than proteins. The self-assembling 
lipid bilayer accounts for the thinness of the membrane (typically ~ 5 nm) and its 
ability to sustain a transmembrane electrical field of > 10 MV/m. This powerful 
electric field results from the fact that the membranes of living cells are polarized 
(the inner surface is more negative than the outer) and electrochemical gradien-
ts across the membrane are maintained by ion pumps. We show experimental 
evidence that membranes can harness the energy in the transmembrane elec-
tric field and perform useful work (such as counteracting viscous damping in the 
inner ear or mixing an unstirred layer). Thin cylinders (tethers) of membrane are 
formed and the axial force resulting from changes in the electric field measured 
using optically trapped beads. Hyperpolarizing potentials increase and depola-
rizing potentials decrease the electromechanical force. Tether movements can 
be measured in response to sinusoidal voltage signals at acoustic frequencies > 
3 kHz.  Sinusoidal force production is a function of tether length and holding po-
tential. No single model is currently able to explain the nano-MEMS properties 
of the biological membrane. A mesoscopic continuum approach is suggested 
by the fact that surface tension holds the membrane together. The relatively 
feeble scaling of surface tension makes it progressively more important in the 
micrometer and nanometer regimes where it can dominate. The modulation of 
surface tension by an electric field across a mercury/saline solution interface was 
first described by Lippmann and has recently been used as the basis for micro-
fluidic motors. More atomistic approaches suggest a role for the orientation of 
electrical dipoles. The ability of different models to explain electromechanical 
coupling in membranes will be discussed.
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Nanomechanics of collagen fibrils 
 
 

Markus J. Buehler1,* and Evripides G. Loukaides1 
 
 

1 Department of Civil and Environmental Engineering, Massachusetts Institute of 
Technology, Cambridge, MA, 02139, USA  

 
* Corresponding author, email: mbuehler@MIT.EDU  

 
ABSTRACT 

 
Collagen is a protein material with superior mechanical properties, consisting of collagen 
fibrils composed of a staggered array of ultra-long tropocollagen molecules.   Here we use a 
fully atomistic based mesoscopic model that enables studying the elastic and fracture behavior 
of individual tropocollagen molecules, as well as the mechanics of assemblies of 
tropocollagen molecules into collagen fibrils (M.J. Buehler, PNAS, 2006).  Using a simplistic 
representation of a collagen fibril based on a staggered assembly of tropocollagen molecules, 
we show that Young’s modulus decreases with increasing number of tropocollagen fibrils, 
illustrating the scale dependent properties of collagen.  Our results show qualitative 
agreement with experimental results (N. Sasaki and S. Odajima, J. of Biomechanics, 1996), 
who also observed a decrease of Young’s modulus comparing a single tropocollagen 
molecule to collagen fibril. 
 
 
1.  Introduction 
 
Materials found in Nature often feature hierarchical structures ranging from the atomistic, 
molecular to the macroscopic scales [1-5].  Many biological materials found in living 
organisms, often protein-based, feature a complex hierarchical design.   

 
 
Figure 1:  Hierarchical design of collagen.  Here we focus on the difference of the material 
properties between individual TC molecules and collagen fibrils.   
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Collagen, the most abundant protein on earth, is a fibrous structural protein with superior 
mechanical properties, and provides an intriguing example of a hierarchical biological 
nanomaterial [4, 6-18].  Collagen consists of  tropocollagen (TC) molecules that have lengths 
of L ≈ 280 nm with roughly 1.5 nm in diameter, leading to an aspect ratio of around 190 [6, 7, 
9, 18-20].  Staggered arrays of TC molecules form fibrils, which arrange to form collagen 
fibers (Figure 1).   
 
Collagen plays an important  role in many biological tissues, including tendon, bone, teeth or 
cartilage [6, 7, 13, 15, 19, 21].  Severe mechanical tensile loading of collagen is significant 
under many physiological conditions, as in joints and in bone [22, 23].  Despite significant 
research effort over the past decades, the geometry, the typical length scales found in collagen 
fibrils, as well as the deformation mechanisms under mechanical load, and in particular its 
relation to the molecular and intermolecular properties are not well understood well.  
Moreover, the limiting factors in strength of collagen fibrils, and the origins of toughness 
remain largely unknown.  Here we report studies regarding the mechanics of individual 
tropocollagen molecules and assemblies of TC molecules into collagen fibrils, with a 
particular focus on changes in Young’s modulus [20].  Using molecular modeling, we show 
that Young’s modulus decreases from a single TC molecule to an assembly of TC molecules 
into a collagen fibril.   
 
2.  Computational model 
 
We use a mesoscale bead model of TC molecules, as described in [24].  We assemble the TC 
molecules in the manner shown in Figure 2, with a varying number of molecules, from one to 
three molecules.  For each case, we perform a steered molecular dynamics calculation using 
the LAMMPS molecular dynamics code.   
 
From the force-displacement data, we calculate Young’s modulus by considering the small-
deformation linear elastic regime.  With F being the applied force, and A  as the cross-
sectional area of the bundle, the stress is given by  
 

A
F

=σ .       (1) 

 
The strain is defined as 

L
LΔ

=ε ,        (2) 

 
with LΔ  as the increase in length due to applied force, and L  the initial length of the 
molecular assembly.  Young’s modulus is given by  

 

n=1 n=2 n=3

Figure 2:  Schematic of the stacking pattern used in our simulation. The first atom in the first 
molecule is held in place while a force F acts on the other end.  The largest width of the 
assembly in the direction orthogonal to the applied load is taken as the cross-sectional area 
A .  The length of each TC molecule is 300 nm, close to experimental values.  
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ε
σ
Δ
Δ

=E .        (3) 

 
The cross-sectional area is given by  
 

2nDA = ,      (4) 
 
where n  is the number of molecules at the largest cross-section in the molecule, and 

2.15≈D  Å is the distance between two TC molecules as obtained by full-atomistic studies 
[26].  We only consider assemblies of up to n = 5 molecules, since there is no axial overlap 
for more molecules (between the first and fifth or more staggered copy), leading to a constant 
cross-sectional area.  There are no cross-links between tropocollagen molecules.  
 
3.  Computational results 
 
Figure 3 shows the results of a molecular simulation of an assembly of n = 4 molecules.  As 
reported in earlier studies [24], deformation is dominated by intermolecular shear.  Figure 4 
depicts the computed values of Young’s modulus.  It is evident that Young’s modulus 
decreases with an increase of the number of molecules.  The plot also includes experimental 
results of the elasticity of a single TC molecule and the elasticity of a collagen fibril [20].   
 
Figure 5 depicts a direct comparison of the stress-strain behavior of a single TC molecule and 
a collagen fibril, as observed in experiment [20]. In the plot, we also include the stress-strain 
slopes obtained by molecular modeling (note that the slope of the single TC molecule is 
renormalized to match experimental results).   
 
4. Discussion and conclusion 
 

 

 
Figure 3:  Deformation mechanics of an assembly of four TC molecules. The frames were rendered 
using VMD [25].  To improve the visualization, the x-component is shown compressed by a factor of 
10.  Note that this figure depicts permanent (plastic) deformation, beyond the elastic regime.  For the 
analysis of Young’s modulus, we only consider the reversible deformation without intermolecular 
slip. 
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The results indicate that our model is capable of reproducing experimental observation of 
reduction of Young’s modulus, with increasing number of TC molecules.  In contrast to 
earlier attempts of describing the mechanics of collagen, our model is free of empirical 
parameters.  All parameters in the mesoscale model are obtained from full-atomistic 
modeling.   
 
The reduction of Young’s modulus with increasing number of molecules can be explained 
based on a simple model that treats the fibril model (Figure 2) as a combination of springs.  
We assume that there exist two springs with spring constants  1k  and 2k , where 21 kk >  
(atomistic modeling suggests a ration of 5 to 10 for 21 / kk ).  The spring constant 1k  describes 
the elastic response of an individual TC molecule, whereas 2k  describes the intermolecular 
spring.  The collagen fibril with n  molecules can be described as a serial combination of 
springs, with an effective spring constant 
 

1

21

1
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+=

k
n

k
nkeff .     (5) 

 
Note that there are n  stiff springs with 1k , and 1−n  soft (intermolecular) springs with 2k .  
The stress due to displacement uΔ  is given by Aukeff /Δ=σ .  Young’s modulus is defined 
as εσ / , where uu /Δ=ε .  Since  nA ~  (see equation (4)) and nu ~  (constant axial 
staggering displacement, and thus )1()1( 00 −−+= nuuu α , where α  is the ratio of axial shift 
between two neighboring TC molecules, chosen to be 0.77), Young’s modulus is proportional 
to effk : 

 
effkE ~ .     (6) 

 
Equation (5) provides a qualitative explanation for the reduction of modulus with increasing 
number of molecules.   However, this simple model overestimates the drop in modulus 
compared with simulation and experiment, since effk  decreases when n  increases.   
 
Our results help to explain the experimental observation of a reduced modulus of collagen 
fibrils compared to individual molecules.  
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Figure 4:   Variation of Young’s modulus E with respect to the number of molecules in the system.  
The results are normalized with respect to the total value obtained by stretching a single TC molecule.  
The results show a clear decrease of Young’s modulus with increasing number of molecules.   Our 
results indicate that the modulus decreases with an increase in number of molecules, approaching a 
value close to the reduced modulus of a fibril, as seen in experiment [20].   
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Figure 5:   Experimental result of the stress-strain behavior of a single TC molecule (red squares) 
and a collagen fibril (blue triangles), as reported in [20].  The plot also contains the results of our 
molecular modeling, showing that the results for a larger number of molecules fall into the range of 
experimental results, clearly indicating the drop of modulus with increasing number of molecules.  
The slope of the modeling result corresponding to the single TC molecule is renormalized to match 
experimental results as a reference point.     
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ABSTRACT 
 
 
The DNA molecule is modeled as an elastic rod with bending and twisting rigidities, 
subjected to external tension and twist applied at one end, the other end being clamped. We 
study the plectonemic equilibrium of such a rod, taking into account the impenetrability 
constraint. Numerical solutions of this boundary value problem have previously shown that 
purely elastic models can reproduce the supercoiling response of the DNA molecule. Using a 
variational approach, we derive analytical formulae for the elastic response of the filament, 
and extend former numerical results. 
 
 
1. Introduction 
 
It is widely known that mechanical properties of the DNA molecule play an important role in 
the biology of cell, but at present we only have an imprecise view of the way DNA responds 
to various constraints. There is currently an upsurge of interest in this question as 
nanotechnologies make it possible to apply forces onto an isolated DNA filament. 
A typical loading that can be performed experimentally on a double strand of DNA is shown 
in Fig 1: a DNA molecule is fixed at one end on a glass pane while the other end is attached 
to a magnetic bead [1]. By using a magnet, it is possible to pull on the bead while twisting it 
around a vertical axis [2]. For a fixed pulling force, the molecule wraps around itself in a 
helical way, when the rotation angle of the bead exceeds a threshold value: the resulting 
structure is called a plectonem. These experiments can be done for different pulling forces, 
molecule contour lengths or salt concentrations. 
 

 
Figure 1. Simplified view of the experimental setup 
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2. Elastic model for the plectonemic regime 
 
We first investigate the equilibrium behavior of an elastic rod under the constraints described 
above. The rod, with bending rigidity K0 , and twisting rigidity K3, is considered inextensible, 
with a constant circular cross section of radius a, and a total contour length L. We note s the 
arclength with s=0 for the end fixed to the glass and s=L for the other end. The external loads 
are the pulling force F(L) and the torsional moment M(L). 
 
 
 2.1 Plectonems geometry 
 
To analyze the mechanical response of plectonems we make an ansatz on the geometry of the 
twisted filament, relevant to large applied twist: we assume that the plectonems can be 
assimilated to two identical and perfect helices (each one of these helices is itself a double 
strand of DNA), and we also suppose that curvature and twist are uniform in the plectonemic 
part. In the tails we further consider the twist to be uniform and the curvature to vanish, and 
we neglect both the end loop of the plectonems and the region connecting the tails and the 
plectonemic part. 
We parametrize the rod with Euler angles, and take into account material twist as well as 
geometrical torsion, which add up to give the total twist [3]. At the equilibrium the 
plectonems are described by five variables: the plectonemic radius R, the opening angle α, the 
value of the material twist ζp  in the plectonems, the length Lp  of the plectonemic region, and 
the material twist value ζt in the tails. We have for total curvature and twist the following 
expressions (where ε=+/- 1 stands for the chirality): 
 

 
 

  (1) 
 
We model the self-contact of the filament by a hard-wall potential. Geometric impenetrability 
implies that the two helices contact along a straight line, as long as the opening angle is less 
than π/4. In this case the plectonemic radius equals to the circular cross section of the rod. 
 
 
 2.2 Potential energy of the rod 
 
We now derive the potential energy of the elastic rod, which is the sum of three terms: the 
elastic energy, the work done by external loads, and the contact condition: 
 

  (2) 
 
 
where the strain elastic energy is the sum of the square of the curvature and the square of the 
twist, and the external force works again extension and the external moment works again 
rotation. Finally the contact constraint is represented with a Lagrange multiplier, λ. 
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 2.3 Results 
 
We seek extrema of Eqn (2) with regard to the five variables. Euler-Lagrange minimization 
with respect to the twist variables ζp and ζt yields  and 

, which show that the internal moment M(s) is constant 
along the filament, and takes the value M(L) imposed by the loading, both in the tails and in 
the plectonemic part. 
Minimization with respect to the opening angle gives the value of this internal moment: 
 

  (3) 
 
For the variable R we obtain the expression of the contact pressure in the rod: 
 

  (4) 
 
Finally for the Lp variable we find the relation between the pulling force and the plectonemic 
variables: 
 

  (5) 
 
Notice that the value of R is fixed by the condition of hard-wall contact R=a. With the help of 
Eqn (5) we obtain the value of α since the value of F(L) is fixed, and we have checked that 
this set of equations accurately describes the numerical results of [4]. 
 
 
3. Application to the DNA molecule 
 
In order to apply our model to DNA molecules we must consider the electrostatic effects due 
to the bare charge of DNA and to the counter-ions of the solution. Since the inter-strand 
distance is of the order of the Debye screening length the Debye-Hückel approximation, 
leading to the linear Poisson-Boltzmann equation, is not valid in the case we consider. The 
study of the non-linear case is, according to our knowledge, only possible numerically, and 
therefore does not yield any analytical expression. For example [5] investigates the potential 
created by a charged cylinder, and [6] consider helical geometry but within the linear 
approximation. 
We choose to avoid these difficulties by calculating an effective radius of the DNA molecule 
in the plectonemic regime. By effective radius we mean the radius that the  molecule must 
have for acting as a non-charged rod-like polymer. In fact it boils down to determinate the 
radius of the circular cross section introduced in the elastic model with hard-wall contact. We 
give in Fig 2 the effective radius as a function of the pulling force. These results are extracted 
from experimental data, as explained in [4], provided by G. Charvin and V. Croquette (LPS – 
ENS, Paris), on a dsDNA molecule of 11kbp. 
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Figure 2. Effective radius versus pulling force 

 
Fig 2 shows that at low forces the effective radius of the molecule is about 1nm, which is in 
good agreement with ordinary values of the core radius of dsDNA (from 0.9nm to 1.2nm). 
The increase of the effective radius can be interpreted in term of the Manning condensation 
process [7], although it is probably not the only effect to take into account. Experimental 
studies on plasmids at zero force [8] shows that the salt concentration influences the effective 
radius of the DNA molecule in a manner still not understood. 
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The mechanical properties of erythrocytes (red blood cells) influence strongly 
their biological functions and the onset, progression and consequences of a 
number of human diseases. The hyperelasticity characteristics of erythrocyte 
subjected to finite-deformation stretching is studied at the spectrin level by mo-
lecular dynamics as well as at the continuum level by finite-element modeling. 
We have further developed an on-the-fly homogenization scheme for studying 
the mechanics of living cells that comprise 2D/3D molecular networks as structu-
ral bases---Molecular Potential Finite Element Method (MPFEM). For the spectrin 
network that provides membrane shear elasticity, we use the worm-like chain 
(WLC) potential for single spectrin molecular response. Connections among 
molecular structure, cell mechanical deformation and disease states related to 
heredity spherocytosis and Plasmodium falciparum malaria are discussed.
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Elasticity of gels with active cells
Rumi De 1, Assaf Zemel 1, Samuel A. Safran 1
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Mechanical forces acting externally on entire tissues, or generated internally by 
the contractile activity of individual cells within a tissue, play an important regu-
lator y role in many physiological processes, including: bone and muscle growth, 
wound healing, angiogenesis and others. Understanding the response of single 
cells embedded in gel matrices to mechanical loadings, and their behaviour as 
a collective, is important not only for basic biological science but also for the 
rational design of artifcial tissues. Individual cells possess specifc mechanisms 
that enable them to sense and respond to changes in their mechanical environ-
ment. By pulling on their environment, cells sense rigidity gradients, boundaries 
and strain. Many cell types respond to these signals by actively adjusting cell 
polarity. On a macroscopic level, the forces generated by a collection of cells in 
a tissue signifcantly alter the overall elastic response of the system.

We predict the response of cells in a three dimensional elastic medium to ex-
ternally applied strain felds. The cells are modelled as polarizable, elastic force 
dipoles that can change their orientation in response to the local elastic stress. 
We model the ensemble of cells by an extension of the treatment of dielectric 
response of polar molecules. We introduce the elastic analogy of the frequency- 
dependant dielectric function of the medium that allows us to predict the ave-
rage cell polarization and orientational order, the efective material constants, 
and the dynamical response to time-varying cyclic loadings.
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ABSTRACT 
 
 

Lipid bilayers are one of the key materials used by nature.  In the range of a few tens up to a 
few hundred nanometers a simulational approach typically resorts to coarse-grained models; 
however, once the membranes start to bend strongly, the presence of solvent becomes a 
severe obstacle, since it occupies the bulk phase and thus consumes most of the simulation 
time. Devising solvent-free models has therefore been a longstanding goal, which surprisingly 
has proved far more challenging than researchers had anticipated initially, and significant 
progress has only been made in the past few years. This contribution briefly describes a 
recently developed model that has the advantage of being particularly simple, robust, and still 
physically very appealing. 
 
1. Introduction 
 
On the length scale of nanometers lipid membranes appear as dense aggregates of amphiphilic 
lipid molecules, on the length scales of microns they appear as elastic two-dimensional fluid 
surfaces.  Both regimes have long been treated with computational or analytical techniques, 
such as all-atom Molecular Dynamics for the small scale and continuum Helfrich theory for 
the large scale.  But on scales of many tens to a few hundred nanometers neither approach is 
optimal.  In this regime so-called coarse-grained lipid models have been introduced, which 
reflect only very few aspects of a lipid’s molecular structure, maybe only its amphiphilic 
character.  This way fewer degrees of freedom are required for the lipid, hence more lipids 
can be simulated, hence longer length scales are reachable. 
On mesoscopic scales interesting membrane problems frequently involve bilayers which are 
no longer flat.  But once the surface bends into the third dimension, it hits us with a 
vengeance that most of the simulation box is filled with solvent (usually water), not with the 
membrane we initially set out to study.  The obvious desire to eliminate this computational 
burden in situations in which the solvent is no significant part of the physics has motivated 
people to look for coarse-grained lipid models which work without the need of an explicit 
(equally coarse grained) solvent, but things have turned out to be more complicated than 
expected:  While it proved rather easy to replace the solvent by some effective attractive 
interactions between the hydrophobic lipid tails, the general finding in early days seemed to 
be that when membranes form, then they are solid-like (“gel-phase”), while fluid aggregates 
are unstable with respect to thermal undulations [1]. 
The deeper reason for this difficulty is this:  Membranes are self-assembled structures; the 
cohesive energy driving their aggregation is of the order of the thermal energy.  Hence, the 
very same energies which enable fluid membranes also threaten their existence.  For this 
reason the question “What is the right choice for a cohesive energy?” is a bit more subtle than 
in the case of pre-assembled mesoscopic structures, such as for instance polymers (for a 
detailed account see [1]).  A variety of solutions have been proposed recently (see the Review 
by Brannigan et al. [2]), but only very recently working models relying on simple pair 
potentials with very few tuning parameters have been proposed [3,4]. 
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Figure 1: Phase diagram of the bilayer model for tensionless planar 
membranes in the plane of temperature and potential range (see Ref. [3,5]).  

2. Coarse-grained solvent-free model based on broad tail attractions 
 
The lipid model we have recently proposed [3,5] uses three spheres in a row to represent a 
single lipid: One hydrophilic head-bead and two subsequent hydrophobic tail-beads; this 
trimer of beads is stiffened by an effective bending-spring.  All spheres have an excluded 
volume, modeled by the repulsive part of a Lennard-Jones potential.  Aggregation is driven by 
a tail-attraction, and the key to permitting a fluid bilayer phase lies in the use of a sufficiently 
long-ranged potential minimum, such that lipid rearrangements – necessary to enable the 
entropy of the fluid phase – can be excited thermally.  Specifically, we use the simple pair-
potential  for ]2/)([cos)( cc

2 wrrrU −−= πε ccc wrrr +≤≤ , where  is the point where the 
Lennard-Jones repulsion sets in,  is the range of the “cosine-attraction”, and 

cr

cw ε  is the unit 
of energy.  Other functional forms give qualitatively similar results [5]. 
Depending on σ/cw  (where σ  is the tail-bead diameter) and ε/BTk  the system is either 

• in an unaggregated  gas-phase for sufficiently large temperature T , 
• in a gel-phase (solid) for sufficiently small T , 
• or in a fluid phase for intermediate T  and sufficiently large . cw

For a bilayer under zero applied tension this phase behavior is illustrated in Fig. 1. 
Specifically, in the fluid phase a variety of relevant bilayer properties can be measured [5], 
such as the order parameter, monolayer-overlap, the area per lipid, and bilayer rigidity.  The 
latter  can be obtained from the low- -behavior of the fluctuation spectrum, which under zero 
tension is given by 

q
42

B
2 /|| qLTkh κ=q , and one finds bending rigidities κ  at least within the 

range , the correct range for typical phospholipid bilayers [3,5]. TkB303K
By changing the size of the head-bead, different lipid curvatures can be accessed [6].  This 
way the entire range of aggregate shapes – spherical micelles, unbranched and branched 
cylindrical micelles, and bilayers – can be accessed, see Fig. 2.  One expects that lipids with 
different aspect ratios sense the curvature of the monolayer in which they are embedded 
differently, hence the local composition of mixtures of differently shaped lipids should 
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Figure 2: Example of a sequence of aggregate shapes upon changing the ratio between head- vs. tail-
bead size (or, equivalently, the Israelachvili/Mitchell/Ninham packing parameter P) as follows: a:0.7(P=1.4), 
b:0.9(P=0.83), c:1.1(0.55), d:1.2(P=0.46), e:1.4(P=0.33).  Details see Ref.[6]. 

depend on the local state of curvature.  This can indeed be quantified and explained using 
simple analytical tools [6].  The effect is small, though, implying that its use for the purpose 
of lipid sorting would require it to go in hand with other mechanisms, such as for instance 
shape-triggered lipid demixing. 
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Key roles for elasticity of matrix and cortex - from 
atomistic simulation to simple thermodynamic model

Dennis Discher
University of Pennsylvania, 112 Towne Bldg, 19104 Philadelphia, United States of America

Cellular disease and differentiation are differentiation are often thought of in 
strictly molecular terms, but we will present several examples of where a more 
contiuum concept of elasticity at that level and certainly higher are key to un-
derstanding.  Steered molecular dynamics of protein extension (on the protein, 
spectrin) has been studied as a function of temperature and elasticity changes 
shows good correlation with disease causing mutations.  Analogous models to 
the simplest ones applied in electrophysiology are then developed for under-
standing how cells probe and respond to matrix elasticity.  The experimental 
results highlight novel physical mechanisms in differentiation while the mode-
ling perhaps points the way toward simple thermodynamic approaches to an 
otherwise complicated mechanical problem.
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G. A. Vliegenthart and G. Gompper

Institut für Festkörperforschung,
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ABSTRACT

Virus capsids are self-assembled protein shells in the size range of 10 to 100

nanometers. The shells of DNA-viruses have to sustain large internal pressures

while encapsulating and protecting the viral DNA. We employ computer simulations

to study the mechanical properties of crystalline shells with icosahedral symmetry

that serve as a model for virus capsids. The shells are positioned on a substrate

and deformed by a uni-axial force excerted by a small bead. We predict the elastic

response for small deformations, and the buckling transitions at large deformations.

Both are found to depend strongly on the number N of elementary building blocks

(capsomers), and the Föppl-von Kármán number γ which characterizes the relative

importance of shear and bending elasticity.

I. INTRODUCTION

The deformation of thin elastic sheets is a fundamental problem with many practical

applications to different physical and biological systems that cover a wide range of char-

acteristic sizes. Among these systems are macroscopic materials extending from thin steel

plates via thin rubber films to paper sheets, mesoscopic materials like clay platelets, the

membrane of biological cells and giant vesicles, but also microscopic materials like virus

particles and carbon nano-tubes. In this paper, we focus on the elastic and mechanical

properties of a model for icosahedral virus capsids for which — inspired by recent exper-

iments with an Atomic Force Microscope (AFM) — we have studied the response to an

applied uni-directional force excerted by a small colloidal particle [1].

Historically, the study of thin elastic sheets dates back to the early work of Föppl [2] and

von-Kármán [3]. In the Föppl-von Kármán formalism, a thin shell of a three-dimensional

homogeneous elastic material with a three-dimensional Young modulus Y , Poisson ratio

ν and thickness h can be described by a mathematical surface (of zero thickness) with

a two-dimensional Young modulus K0 and a bending rigidity κ [4]. The equations that

describe the mechanical equilibrium are the von-Kármán equations. For most geometries

and boundary conditions a general solution of these equations is not available; therefore,

one is handed over to a numerical solution of the problem. Our strategy is to solve the

elastic problem using classical molecular-dynamics computer simulations.

In the remainder of this section we briefly outline the biophysical system under study.

In the next section, we give a precise description of the model and the simulation method

that we use, and finally in Sec. 3 we discuss some of the key results.

A virus is a tightly packaged amount of genetic material that is able to replicate in a

biological cell. The genome of a virus is contained in a protective cage known as the viral
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capsid. A viral capsid has a remarkably regular structure and is built up from a fixed

number of copies of a single or a few kinds of capsid protein. Its geometry is that of an

icosahedron or a helical cylinder, but more complex structures also exist [5]. While the

in-vivo assembly of an infectious virus from its constituents is widely recognized as the

paradigm for self-assembly in biology, the physical principles that underlie the structure,

genome encapsulation, assembly, as well as the mechanical and transport properties of

viruses remain poorly understood [6]. Many kinds of virus have been reconstituted from

their components in vitro [5]. Under the right conditions of temperature, ionic strength

and acidity, viral coat proteins self-assemble into virus-like particles, even in the absence of

genome or in the presence of foreign genome or of a generic polyelectrolyte. Size and shape

of the assemblies in those cases need not be identical to that of the native virus. This has

led to the recognition that mass action drives viral assembly, that hydrophobic interactions

between the coat proteins must be responsible for it, and that the electrostatic interaction

between the genome and the coat proteins contributes to the viral structure and stability

[5, 6]. It is therefore reasonable to explore the underlying physical principles of a virus

particle without explicitly considering its biochemistry in full atomistic detail [7, 8]. For

instance, the mechanical response of a viral capsid to a perturbation (either through a

spontaneous fluctuation or by deliberate indentation, e.g., by means of an Atomic Force

Microscope) seems very well described by continuum elasticity theory [9, 10] although it

is not entirely evident why this should be the case.

Here we discuss the mechanical properties of viruses with an underlying icosahedral

symmetry, which implies spherical or icosahedral capsid shapes. The origin of the stability

of this shape lies in the fact that any regular triangulation of a sphere requires an excess

of at least 12 five-fold disclinations. Caspar and Klug [11] showed that the organization

of proteins in the viral shell is such that a few protein subunits form pentavalent and

hexavalent morphological units that organize into an icosahedral shell. This shell can

be characterized by two numbers p and q, which define the triangulation number or T -

number of the virus, with T = p2 +q2 +pq. The number of vertices N of the triangulation

then is N = 10 T + 2, the number of triangles is NT = 20 T , and the number of protein

sub-units is 3 NT = 60 T . For most viruses the number of subunits is rather small, so

that consequently T and NT are also small. The mechanical stability of these viruses

is a direct consequence of the interactions between sub-units. These interactions are on

the order of 100-400 kJ/mole which amounts to several tens of kBT per protein-protein

bond. For DNA viruses, the magnitude of this binding energy has an obvious origin: the

genetic material is tightly packed, resulting in a large internal pressure which drives the

injection of genetic material during infection [12, 13]. For other viruses the mechanical

requirements are not so clearly understood yet. Recent experiments have shown that for

some viruses the thickness of the protein shell and consequently the elastic properties of

the shell change during virus maturation [10, 14] and this might be relevant for virus

entry in the cell.

All this suggests that the elastic properties of viral capsids play an important biophys-

ical role. We therefore investigated the mechanical properties for a simple elastic model

that, in contrast to recent finite-element calculations, correctly takes into account the

geometric structure of the viral capsids. We performed a simulation study of virus inden-

tation in a set-up very similar to the AFM experiments of Ref. [9]. This approach allows
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FIG. 1: Illustration of the triangulated-surface model. On the right a small portion of the

surface is magnified and indicates the organization of nodes in a triangular lattice. The nodes

are permanently connected by Hookean springs (Eq. 1). The bending potential is introduced

via the scalar product of normal vectors on adjacent triangles (Eq. 2).

for a direct investigation of the effect of various parameters — like bending rigidity, Young

modulus, capsid radius, ‘tip’ radius of the AFM, and capsid orientation — on the shape

of force-deformation curves. We used a triangulated-surface model, where the number

of vertices that is used to discretize the surface can be varied easily. This allows for a

detailed analysis of finite-size effects; in the limit of a large number of nodes, the results

should approach or become equivalent to the (unknown) solutions of continuum elasticity

theory. Our results are important to properly interpret experimental force-deformation

curves.

II. MODEL & METHOD

We model our icosahedral viruses using a coarse-grained triangulated-surface model.

In this model, the surface is represented by discrete points that are arranged in a regular

triangular lattice with fixed connectivity. Nearest-neighbor lattice points are connected

by Hookean springs with spring constant k, which gives rise to a total stretching energy

Vs =
k

2

N
∑

〈i,j〉

(|ri − rj| − r0)
2 . (1)

The finite thickness of thin material shells gives rise to a resistance to bending that we

model using a bending potential

Vb = λ
∑

〈α,β〉

(1 − nα · nβ) . (2)

The triangulated-surface model is illustrated in Fig. 1. In order to connect with properties

of real materials, the potential parameters k and λ need to be related to the macroscopic

elastic constants.

It was shown by Seung and Nelson [15] that the spring constant k can be related to

the two-dimensional Young modulus via K0 = 2k/
√

3, while λ is related to the bending
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rigidity via κ =
√

3λ/2. In turn, when homogeneous shell of thickness h with Poisson

ratio ν is assumed, the two-dimensional Young modulus and the bending rigidity are

related to the three-dimensional elastic parameters via K0 = Y h and κ = Y h3/12(1−ν2).

The ratio between bending and stretching energies is characterized by the Föppl-von

Kármán number γ = K0R
2/κ, where R is a characteristic length scale of the system.

For the viruses we take R = Rv, the average radius of a virus. In general, for large γ the

equilibrium shape is dominated by stretching energy, giving rise to faceted viruses, while

for small γ bending contributions are important and the viruses are predominantly round

in shape. In case the protein shell of viral capsids were characterized by a universal ratio

K0/κ, as argued in Ref. [7], this would imply that small viruses are round while large

viruses are increasingly faceted in shape.

In Fig. 2 the simulation set-up is sketched. An icosahedron of NT triangles is positioned

with one of the faces on a supporting substrate. Then a sphere with radius Rs, initially

positioned centrally on top of the virus, is moved downwards at a constant rate. This rate

is chosen small enough that the deformation propagates almost instantaneous through the

material. The dimensionless force F/
√

K0κ on the sphere is measured as a function of

the dimensionless distance between sphere and substrate (1 − ∆z/2Rv).

Rv

Rs

FIG. 2: Schematic illustration of the virus deformation set-up. A virus is positioned on one

of its face on the substrate. A small sphere with diameter Rs = 3r0 is moved downwards at a

constant rate. The force on the sphere is monitored as a function of the distance between the

sphere and the substrate.

III. RESULTS

We measured force-deformation curves for a large number of parameters. In Fig. 3, we

show force-deformation curves for several virus shells that differ in triangulation number

and in Föppl-von Kármán number. For small γ, the data with increasing T -number

quickly converge to an almost linear behavior up to large compressions. For large γ, this

convergence is much slower. For the smallest tringulation number of T = 1, a jump in the
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FIG. 3: Force deformation curves for the case that Rs = 3r0. On the left, results for γ = 50, on

the right for γ = 1500.

curve is visible, which correspond to buckling event, i.e. a sudden rearrangement leads

to an instantaneous drop in the force on the sphere. Such buckling events are frequently

observed also for large T in the case of large γ [1].

For small enough deformations all curves follow a universal scaling relation,

FRv

κ
√

γ
= C

(

1 − ∆z

2Rv

)

(3)

where F is the force the capsid exerts on the sphere and ∆z = zsphere − zplate − Rs is the

vertical deformation. The scaling factor Rv/κ
√

γ = 1/
√

K0κ is the same as was found

for the scaling of the buckling force of spherical shells [4] and of stretching ridges in thin

elastic sheets [16]. For large γ, the initial slope of the buckling curve can be described by

the same scaling relation (i.e. with the same value of C) while for larger compressions a

second linear regime is observed with a different (larger) effective spring constant, compare

Fig. 3. The details of these two regimes are discussed in Ref. [1].

For both small and large γ, the initial deformation corresponds to a local deformation

of the surface by the tip. For increasing deformation the response becomes more and

more non-local. In Fig. 4 the generic deformation pathway, as found for all simulations

with this geometry, is illustrated for a one particular system. From left to right configu-

rations at different instants of time are shown. Figure 4 bottom shows the corresponding

deformations. We find that upon compression the top face deforms first, followed by an

inwards flip of one of the corners of the top face. This ’flip-in’ corresponds to a buckling

event. Further compression of the virus leads to a cascade of smaller and much more

difficult to interpret buckling events.

In recent experiments [9, 10, 17] force-deformation curves were measured for several

different viruses. These data have been analyzed and interpreted so far using finite-element

methods for spherical solid shells. Our results show how more precise information can be

extracted from such experiments.

Finally, we want to mention that for very large Föppl-von Kármán numbers, a large

number of small buckling events can be observed in the simulations, which resembles

crumpling of a paper sheet. Indeed, the same model described above has been used to
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FIG. 4: Schematic illustration of the deformation pathway. Top: sequence of configurations

corresponding to the deformations indicated by the numbers in the schematic deformation curve

in the lower figure. ‘1’ corresponds to a small deformation, ‘2’ is the situation just before buckling

(maximum stress), ‘3’ in the buckled state, and ‘4’ indicates the final state (after more than one

buckling event). For clarity only the vertices that are connecting the ridges are shown.

study the intriguing pattern of folds which appears on crumpled sheets [18].
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Membrane fluctuations driven by actin and myosin: 
waves and quantized division  

Nir S. Gov 1, Roie Shlomovitz 1  

1Weizmann Institute of Science, PO Box 26, 76100 Rehovot, Israel  

We present a model which couples the membrane with the protrusive forces of 
actin polymerization and contractile forces of molecular motors, such as myo-
sin. The actin polymerization at the membrane is activated by freely diffusing 
membrane proteins, which may have a distinct spontaneous curvature. Mole-
cular motors are recruited to the polymerizing actin filaments, from a constant 
reservoir, and produce a contractile force. All the forces and variables are treated 
in the linear limit, which allows us to derive analytic solutions. Our results show 
that for concave membrane proteins the myosin activity gives rise to propaga-
ting membrane waves similar to those observed on different cells. For convex 
membrane proteins the myosin activity gives rise to an unstable contraction, 
which yields a length-“quantization“ of the mitosis process. 
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Active Transport in Disoredered Microtubule Networks
Rony Granek

Department of Biotechnology Engineering, Ben Gurion University of the Negev, PO Box 653, 84105 Beer-Sheva, 
Israel

The motion of small cargo particles that are carried by microtubule associated 
motor proteins in disordered and partially disordered microtubule networks is 
investigated. Different network topologies in two and three dimensions are con-
sidered, one of which has been recently studied experimentally in vitro by M. 
Elbaum and coworkers. A generalization of the random velocity model is used 
to calculate the mean square displacement of the cargo particle. We find that all 
cases fall into the class of enhanced diffusion, that is sensitive to both the dimen-
sionality and the topology of the network. Yet, in three dimension the motion is 
very close to simple diffusion. When the thermal diffusion in the bulk solution is 
included, no change in the asymptotic time behavior is found, as expected, but 
the prefactors are sensitive to the physical parameters of the system.
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Vibrations in Proteins: Fractons and Dynamics Detected 
by Single Molecule Experiments

Rony Granek 1, Josef Klafter 1

1Department of Biotechnology Engineering, Ben Gurion University of the Negev, PO Box 653, 84105 Beer-Sheva, 
Israel

The internal dynamics of proteins has been recently intensively studied in sing-
le molecule experiments using electron or energy transfer reactions combined 
with fluorescence spectroscopy. These experiments monitor the evolution in 
time of the distance between two associated groups on the protein from which 
the time autocorrelation function of this distance is deduced. Experiments from 
the group of X.S. Xie from Harvard show anomalous relaxation of the autocor-
relation function over long periods of time. The motivation behind these expe-
riments has been to understand the versatile biological function of protein, e.g. 
as enzymes. The hypothesis is that for proper protein function there is need for 
large internal motion that nevertheless is not changing the protein specific fol-
ding configuration nor it is inducing its unfolding.

We have advanced a theory that can explain the results of these experiments 
and, in addition, give a physical explanation for the major motional ability of 
natural folded (native) proteins (Phys. Rev. Lett. 95, 098106, (2005)). The theory 
is based on the description of folded proteins as fractal objects. Fractals fill up 
the 3-dimensional space only partially by making a structure that is „self-similar“ 
when one is looking at different length scales. This description has its founda-
tions in computational analyses of known folding configurations of many dif-
ferent proteins and also in direct measurements. One of the main outcomes of 
this description is given as a generalized „Landau-Peierls instability“ that results 
from studying vibrations of a fractal. This effect shows that as long as the spec-
tral dimension – that controls the change of the density of normal modes with 
frequency – is smaller than 2, the amplitude of the vibrations within the protein 
increases with increasing number of amino acids as a power-law that depends 
on the spectral dimension. This property enables the protein to achieve maxi-
mum vibrations without inducing unfolding. This is true so long as the spectral 
dimension of a given protein is such that the amplitude of the vibrations is not 
too large, which is consistent with computational analyses.

We calculated the autocorrelation function of the distance between two „points“ 
on a fractal that models a thermally vibrating protein. Using fractons, the vibra-
tional normal modes of a fractal, they have shown that this correlation function 
decays anomalously, starting as a nearly stretched exponential decay and chan-
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ging to an algebraic decay at long times, as observed in experiment. We conclu-
de that this feature of the autocorrelation function is universal and not linked to 
the specific protein on which it is measured, nor it is dependent on the specific 
pair of groups (points) whose inter-distance motion is being detected. We now 
continue in this research direction in order to elucidate the relation between the 
fractal properties of folded proteins and their biological function.
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Rewiring the T cell signaling network using solid-state
nanostructures
Jay T. Groves
Department of Chemistry, University of California, Berkeley CA 94720

The hardware for cell signaling networks consists of cascades of

chemical reactions. In recent times, it has become apparent that there

are many situations in which chemically identical systems exhibit

distinctively different behavior, in a seeming defiance of the laws of

chemistry. On closer inspection, key differences in such cases can be

found in the spatial organization of the molecules. We have developed

a strategy, based on solid-state nanofabrication, to induce controlled

spatial rearrangements of molecules in otherwise chemically identical

living cells. These spatial mutations allow precise studies of the role of

spatial organization in the function of living chemical reaction

networks. We have recently applied this strategy to the study of

signaling in live T cells, and have discovered a novel mechanism by

which the cytoskeleton regulates signaling through the T cell receptor.

Thousands of membrane associated receptors and signaling molecules
transduce signals between cells. In many cases, properties of individual
binding events have proven insufficient to account for the remarkable
behavior exhibited by these proteins in the cellular context. Collective
protein-protein interactions and clustering on molecular length scales have
been widely implicated in signal transduction. More recently, coordinated
rearrangement of cell membrane receptors into distinctive patterns is
emerging as a broadly significant theme of intercellular signaling. Hallmark
examples are provided by the immunological synapses, which over the last
few years have been discovered at junctions between a variety of immune
cells and their respective target cells. Spatial patterns of proteins within the
junction develop as populations of receptors on one cell membrane engage
their cognate ligands on the apposed cell membrane. The emergent patterns
can be microns in extent, thus transcending direct protein-protein contact
interactions, and exhibit strong correlations with the ensuing intracellular
signaling and effector functions.

A critical role of the immune system is to identify and destroy those cells that
have become infected by a pathogen or have entered into some other form of
aberrant life cycle. Two classes of immune cells that perform this surveillance
are T lymphocytes (T cells) and natural killer (NK) cells. T cells are the front
line of the adaptive immune system and their activation primarily occurs via
interaction of T cell receptors (TCRs) on the T cell with major
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histocompatibility complex
proteins (MHC) displaying
peptide fragments on the
surface of antigen presenting
cells (APCs). Based on the
nature of these interactions, a
variety of signals can be
transduced.

Both T cells and NK cells
execute their surveillance
processes by formation of an
immunological synapse with
the target cell[1-7]. A variety
of recent observations have
revealed precisely organized
and dynamic patterns of
receptors and signaling
molecules within the
synapse[8-13] (Figure 1)[14].
Moreover, the micron-scale
geometrical configuration of
these proteins exhibits a
functional correlation with
signaling activity. Ultimately, an elaborate assembly of co-stimulatory,
adhesion, ubiquitinating, and other signaling molecules[15-19] along with
cytoskeletal attachments [20-23] and lipid rafts[24-27] all become organized
within immunological synapses.

Multiple functions for the geometric pattern of molecules in the synapse have
been proposed[28-30]. Collectively, these ideas frame the immunological
synapse as a complex signal transduction system in which multiple
regulatory couplings are mediated via spatial organization. However, direct
establishment of causal relationships between changes in the synaptic pattern,
ligand quality and dosage, and altered signaling remain elusive.

In order to explore the mechanisms of immunological synapse formation and
the connectivity between spatial organization and signal regulation at
intercellular junctions, we have developed an experimental platform that
enables direct manipulation of synaptic patterns in living T cells[31]. A
supported membrane, consisting of a continuous and fluid lipid bilayer
coating a solid substrate[32], can be used to create an artificial APC
surface[33]. In the case of T cells, inclusion of glycosylphosphatidylinositol
(GPI) – linked forms of MHC and ICAM1 into the supported membrane is
sufficient to enable immunological synapse formation between a living T cell

Figure 1: Schematics (left) and live cell

fluorescence images (right) of immune synaptic

patterns. A. Mature T cell synapse with TCR-pMHC
(green) in the center (c-SMAC) and LFA1-ICAM1

(red) in the periphery. B. Thymocyte synapse,

labeled as in A. (Adapted from reference [14])
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and the synthetic supported
membrane[9]. This hybrid live cell –
supported membrane synapse
configuration is illustrated
schematically in Figure 2[31].

A critical characteristic of supported
membranes is their fluidity. A single
bilayer membrane uniformly coats the
surface, firmly trapped by van der
Waals adhesion forces, but remaining
separated from the underlying
substrate by a ~1 nm thick layer of
hydration water. This water layer
prevents membrane components from
becoming directly adsorbed on the
solid substrate, enabling
unconstrained rotational and
translational mobility of lipids and
membrane-linked proteins within the
plane of the membrane. On molecular
length scales, the fluid membrane
environment allows assembly of
multi-protein complexes. Over larger
length scales, reaction-diffusion and
transport processes can produce
macroscopic composition patterns,
such as occur during assembly of the
immunological synapse. Fluidity is a
unique property of supported
membranes that distinguishes them
from solid and polymeric substrates,
which cannot afford such a range of motions. Fluid movement within the
membrane, however, can be precisely controlled by fabricating geometrically-
defined patterns of solid-state structures on the substrate (Figure 2, inset)[34].
Using a series of substrate-imposed constraint patterns to guide molecular
motion in the supported membrane, a variety of alternatively patterned
synapses between living T cells and supported membranes can be induced.

Silica substrates displaying various configurations of chromium lines (100 nm
wide and 5 nm high) were fabricated by electron-beam lithography.
Supported membranes, containing GPI-linked pMHC and ICAM1, were
assembled on these prefabricated substrates by vesicle fusion. The chromium
creates barriers that restrict the motion of lipids and proteins within the
otherwise fluid and homogeneous supported membrane. This patterned

Figure 2: Diagram of a hybrid live cell–

supported membrane junction.

Receptors on the cell surface engage

cognate ligands in the supported

membrane. Movement of molecules in

the supported membrane is locally

blocked by chromium structures (100

nm wide and 5 nm high), which have

been fabricated onto the substrate by

electron beam lithography (see inset).

(Adapted from reference [31])
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substrate forms the bottom face of a
temperature-controlled flow cell, into which
cells are injected. Naïve T cells from first
generation AND x B10.Br mouse spleens
were stimulated in vitro and expanded to
blasts prior to use in synapse formation
experiments. TCRs on these T cells
recognize moth cytochrome c (MCC) 88-103
peptide (ANERADLIAYLKQATK) bound to
the murine MHC class II molecule I-Ek
(pMHC) in the supported membrane.
Control experiments using a null peptide
(T102E) show no response, confirming that
the synapse formation and signaling
activity are antigen specific and that TCR
clustering does not originate from the
chromium patterns. As receptors on the T
cell surface engage their cognate ligands in
the underlying supported membrane, they
become subject to the geometrical pattern of
mobility restrictions imposed by the
substrate. In this way, substrate patterns
can influence the transport of proteins and
signaling machinery within the living cell.
Other than the underlying freedom-of-
motion constraint, the initial distributions of
proteins in the supported membrane are
homogeneous and exhibit free lateral
diffusion. Spatial patterns within fully
formed synapses are driven entirely by the
T cell. The patterns differ from the wild
type concentric rings of the c-SMAC and p-
SMAC as a result of the mechanisms by which the T cell drives protein
rearrangements and the way different geometric and mobility constraints on
the substrate frustrate these processes.

A series of four synaptic patterns, formed under different substrate constraint
geometries, are pictured in Figure 3. Unrestricted synapses form the
characteristic c-SMAC (3A). Constraint patterns consisting of arrays of
parallel lines, such as shown in Figure 3B, restrict protein mobility in one
dimension and skew the synaptic pattern from a circular to a rectangular
shape in which a central band of TCR-pMHC is flanked by two bands of
LFA1-ICAM1. Multifocal synapses form when grid constraint patterns create
an array of isolated membrane corrals (3C). More elaborate constraint
patterns, such as the mosaic of concentric hexagonal barriers illustrated in

Figure 3: Repatterned T cell

synapses with patterned

supported membranes. Substrate

barriers impose motion constraints

on proteins in the supported

membrane and their cognate

receptors on the live cell surface.

TCR (green); ICAM (red).
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Figure 3D, can also be
used. T cells were
observed to form synapses
under all of the constraint
patterns studied,
providing a diverse
collection of alternative
synaptic patterns.

The initial distribution of
TCR on the T cell surface is
believed to be
homogeneous. In our
experiments, we observed
T cell contact with the
supported membrane, the nucleation of TCR microclusters, and then the
organization of the microclusters into a c-SMAC. This process is guided by
chromium barriers on the silica substrate. Using total internal reflection
fluorescence microscopy, the transport patterns of individual TCR
microclusters and their interactions with the substrate-imposed constraint
grids can be resolved.

Analysis of the final patterns, as well as their intermediate stages during
formation, can be used to reveal the underlying mechanisms of synapse
formation. A representative image of a highly fragmented T cell synapse,
consisting of more than 100 micro-synaptic clusters of TCR-pMHC
complexes, formed on a 1 µm grid of constraint barriers is illustrated in
Figure 4[31]. Several mechanistic aspects of synapse formation can be
discerned from this image. The microclusters remain stable and trapped for
more than 30 min, in spite of the rapid TCR-pMHC off rate (~0.01-0.1 s-1 [35]).
Since TCR motion can presumably only be constrained by the grid through
engagement with pMHC, the long-term stability of these microclusters
indicates that multiple TCR are moving as a unit. Otherwise, individual TCR
could percolate over the narrow barriers during momentary disengagements
from pMHC. The position of each TCR-pMHC microcluster within its corral
reveals the direction of the transport force, and can be used to compile a
comprehensive transport map over the entire synaptic interface. In Figure 4B,
the underlying constraint pattern is highlighted with gray lines and an arrow
has been drawn in each corral, pointing towards the position of the TCR-
pMHC microcluster. The clusters are generally pulled to the corner of the
corral nearest the center of the synapse; highly consistent radial coordination
of the microcluster positions is almost always observed on grid constraint
patterns. We have developed an image analysis strategy for quantification of
this coordinated positional information. The methodology provides a unique
observation of static force. Typically one TCR-pMHC cluster is observed per

Figure 4: A. TCR distribution in a highly fragmented T

cell synapse formed on a pMHC, ICAM1 supported

membrane partitioned by a 1 micron grid of chromium

lines. B. Same fluorescence image as in (A) with grid

lines highlighted. Arrows are drawn in each grid

element pointing towards the TCR cluster, illustrating

the direction of the apparent transport force. (Adapted

from reference [31])
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corral for the 1, 2, and 5 µm square grids studied. This observation suggests
that TCR clustering occurs only after pMHC engagement. If TCR were
substantially preclustered, one would expect a stochastic distribution of
microclusters within the corrals rather than the even distributions we
generally observe. Collectively, this set of observations illustrates a three step
process by which the mature T cell synapse forms: i) TCR engage pMHC; ii)
TCR-pMHC assemble into microclusters that are segregated from the
adhesion molecules (with differing topographical size); iii) microclusters are
transported to the forming c-SMAC in a directed manner, presumably by
signaling-induced cytoskeletal motion and membrane forces.

Each T cell receptor is a multi-unit protein consisting of an �� heterodimer
associated with a CD3 complex, which has on its cytoplasmic side a number
of immunoreceptor tyrosine-based activation motifs (ITAMs). The ITAMs
contain several locations that are phosphorylated by the kinase Lck and serve
as origins of TCR-specific signaling. The cytoplasmic distribution of
phosphorylated tyrosine (pY) residues serves as a measure of the signaling
strength, and can be monitored by immunofluorescent staining with the anti-
pY antibody 4G10. Cells were incubated over the supported membranes for 2
and 5 minute periods, they were then fixed and stained for pY.

A distinctive sequence of TCR spatial organization and pY signaling is
observed during early stages of synapse formation. Shortly after the first
contact between the T cell and the APC surface, microclusters of TCR form
and are spatially co-localized with regions of relatively increased pY
signaling. Representative images of TCR (green) and pY (purple) for
synapses forming on unrestricted supported membranes and supported
membranes constrained by 2 µm grids of diffusion barriers are illustrated in
Figure 5[31]. Images in 5A and 5B were taken two minutes after the T cells
contacted the APC surface and are illustrative of the TCR signaling activity at
this nascent stage of synapse formation. In addition to the direct co-
localization of TCR microclusters with regions of high pY signaling, which
can be seen clearly in the central region of the nascent synapse, a diffuse ring
of pY signaling appears in the periphery. A portion of this does not co-
localize with TCR microclusters, specifically, and may represent integrin-
related signaling, which is also detected by the anti-pY antibody, or signaling
from TCR microclusters. However, regions of relatively higher pY signaling,
over this diffuse background, can be seen co-localized with the TCR
microclusters. In general, TCR specific signaling activity is observed for all
TCR microclusters at the 2 minute time point, for both constrained and
unconstrained synapses alike.

Five minutes after contact, a well resolved c-SMAC is seen to form in the
constraint free case. This is the native T cell synaptic pattern. As seen in
Figure 5C, no signaling activity is detected from the TCRs, all of which are
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concentrated in the c-SMAC. The
diffuse ring of non-TCR signaling
is still observed in the periphery.
In striking contrast to the
consistent shutdown of TCR
signaling seen in the native
(unrestricted) synaptic pattern, the
prevention of TCR transport to the
forming c-SMAC prolongs TCR
specific signaling. This can be seen
clearly in Figure 5D, in which
bright regions of pY signaling
above the diffuse background are
co-localized with the trapped
peripheral TCR microclusters. The
enhanced signaling, however, is
restricted to the periphery. TCR
clusters trapped in more central
regions of the synapse no longer
signal.

Image analysis can be used to
compute the percentage of TCR in
each cell that co-localized with
regions of intense pY signaling. To
quantify the TCR-specific portion
of the pY signal, we compute the
cross correlation between the TCR
pattern and the pattern of spikes in
pY signal above the local
background. Results from this
cross correlation analysis appear as
small white spots in Figure 5 A –
D, and are summarized in Figure
5E. At 2 minutes, moderately
enhanced TCR co-localization with
pY is seen in restricted synapses
relative to the unrestricted
synapses. Re-patterning effects
from the diffusion barriers are
already acting to prolong TCR
signaling. At five minutes after
contact, the contrast is
unmistakable: cells forming native
synapses had 2±4% co-localization,

Figure 5: TCR-specific phosphotyrosine (pY)
signaling in native and repatterned synapses.

A. Synapse on unpatterned membrane at 2
minutes. B. Synapse on a 2 µm chromium

grid at 2 minutes. C. Synapse on unpatterned

membrane at 5 minutes. D. Synapse on a 2
µm chromium grid at 5 minutes. E. Statistical

results for % TCR co-localization with pY. F.

Intracellular calcium is elevated in cells with

repatterned synapses. (Adapted from

reference [31])
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corresponding to near-total shutdown, while cells with re-patterned synapses
on 2 µm grids had 14±12% co-localization, which visually corresponds to
phosphorylation of all TCR trapped in the peripheral ring. Mechanical
trapping of TCR microclusters in the synapse periphery apparently prolongs
pY signaling.

Another key measure of signaling activity is the flux of intracellular Ca2+

induced by TCR antigen recognition, which integrates the outputs of all TCR
signaling events in the synapse[36]. T cells were loaded with the ratiometric
calcium-sensitive dye fura-2 and allowed to interact with pMHC-ICAM
membranes. The fura-2 fluorescence emission ratio (510 nm emission with
340 nm vs. 380 nm excitation) was integrated from 5 min to 20 min in cells on
and off 2-µm grids. Data from five independent experiments (totaling 49 cells
on and 57 cells off grids) is plotted in Figure 5F. The integrated Ca2+ response
was significantly higher in cells with spatially repatterned synapses as
compared to those with native synaptice patterns. Thus, mechanical trapping
of TCR in the synapse periphery augments early TCR associated pY levels
and the elevation of cytoplasmic Ca2+.
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ABSTRACT

We report a new strategy to parameterize effective ion-ion potentials for implicit sol-
vent simulations of charged systems. The effective potential includes a pair term and a
Coulomb term that by means of a concentration dependent dielectric permittivity takes
into account multi-body effects. We demonstrate that this approach allows to accurately
reproduce the solution osmotic properties and the ion coordination up to concentrations
of 2.8 molar aqueous NaCl.

1. Introduction

Ions in aqueous solutions play an important role in many biological and man-made sys-
tems. The ions can be involved directly, for example, in interactions with proteins, or
indirectly by screening interactions between charged molecules in solution. In both cases
the behavior of the system depends strongly on the spatial distribution of the ions. To
model the proper ion distribution large length scales are required, because of the long-
ranged nature of electrostatic interactions. As the system sizes prohibit the use of ex-
plicitly modeled solvent molecules one has to use effective potentials that implicitly take
solvation into account. For a single solute species at a fixed concentration more accurate
potentials can be obtained by Boltzmann inversion of pair distributions functions. For
ionic solutions, however, one can not directly invert the distributions of the three ion pairs
as they are not independent. One can approximate the effective interactions between the
ions with pair potentials using McMillan-Mayer theory, through reverse Monte Carlo or
the hypernetted-chain approximation.[1, 2] The problems of this approach are that the
potentials are not unique, for each density of interest one has to perform long simulations
to obtain accurate distributions.

2. Methods

Here we describe a method that avoids the disadvantages of Boltzmann inversion by
splitting the procedure into two parts.[3] We will use NaCl in aqueous solution as an
example system. First we derive effective pair potentials for the three different ions pairs
at high dilution. This we do by using atomistic simulations of a single ion pair in a box (3.5
nm rhombic dodecahedron) with 1000 water molecules. The effective force is determined
by constraining the distance between Na+-Cl−, Na+-Na+ and Cl−-Cl− and measuring
the constraint force. To account for multi-body effects, certainly present at high ionic
concentrations, a concentration dependent dielectric permittivity εE(c) is introduced in
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Figure 1: The effective potential for single ion pairs with the WS force-field (solid lines),
Vs(r, c) for c = 2.8 M (dotted line) and pure Coulomb curves with εr = 72 (dashed lines).

a Coulomb term augmenting the long-ranged part of the effective pair potential. We
demonstrate that to obtain these permittivities, in practice only a single simulation at a
high salt concentration is required. We will show that the effective potential accurately
reproduces the pair distribution functions of the explicit solvent simulations, as well as
the experimentally measured osmotic coefficient. The latter result can also be achieved by
replacing the short-ranged part of the effective potential with a simple repulsive potential.
Extending this procedure to inhomogeneous systems would allow for the first time an
accurate description using an implicit solvent.
We used the atomistic force-field parameterized by Weerasinghe and Smith (WS)[4], which
should be used with the SPC/E water model. The electrostatic interactions are treated
with the particle-mesh Ewald method (PME). We performed constrained simulations of
4 to 8 ns at 300 K for the three ion pairs for up to 56 distances ranging from 0.23 to
1.2 nm. Integrating the constraint force from rm=1.2 nm downwards gives the effective
potential with respect to rm. Here one has to correct for the entropic volume contribution
of 2 kB log(r), because the volume sampled by the two ions rotating around each other
scales as r2. As beyond 1 nm the curve is very smooth we assume that the effective
potential beyond is given by the Coulomb potential. The total effective potential can
then be written as:

Vp(r) =





∫ r

rm

[
〈fc〉s +

2kBT

s

]
ds+

q1q2

4πε0

(
1

εE(c) r
− 1

εE(0)

[
1

r
− 1

rm

])
, r < rm

q1q2

4πε0εE(c) r
, r ≥ rm

(1)

where fc is the constraint force. To obtain the dielectric permittivity εE(0) we performed
80 ns simulations of 1000 SPC/E water molecules, which resulted in εE(0) = 71.9 ± 0.6.
The effective potentials are shown in Fig. 1.

3. Implicit solvent simulations

Using the above obtained effective ion-ion potentials we performed implicit solvent simu-
lations using a relative dielectric permittivity of εr = 71.9. We have done this using PME
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Figure 2: The NaCl concentration dependent dielectric permittivity εE for the WS force-
field, a fit and εE scaled to 78.5 at zero concentration which is used for the WCA model.

for 100 ion pairs at six salt concentrations ranging from 0.1 M to 4.5 M, corresponding to
555 to 11.1 water molecules per ion pair. What one observes is that due to the absence of
multi-body terms in the effective potential the Na+-Cl− coordination is underestimated.
The major multi-body effect at higher NaCl concentrations arises from electrostriction
of water. When three or more ions approach each other strong local electrostatic fields
suppress orientation fluctuations of water molecules. It turns out that the multi-body
effects can be captured well by a concentration dependent effective dielectric permittivity
εE(c), where c is the salt molarity. It is determined from a part of the dipole fluctuation
of a solution by considering the contribution of the water molecules only[5]. To determine
εE(c) we have performed simulations of 40 ion pairs for 50 ns in SPC/E water, the results
are shown in Fig. 2. The scaling factor for the electrostatic interactions 1/εE can be fitted
very well with a straight line (Fig. 2). This means that to determine εE(c) in practice it
suffices to simulate two small systems, one consisting of pure water and one salt solution
at a high concentration.
With the correction we obtain the correct coordination up to a concentration of 2.8 M.
The radial distribution functions match perfectly (Fig. 3). Only at 4.5 M we start to
see an underestimation of the Na+-Cl− coordination. Such a superposition has been
demonstrated for finite concentrations before for Na+-Na+ interactions, by empirically
fitting εr at each concentration to obtain the best possible overlap of the short-range
potentials[6]. We have shown that this superposition also works for a NaCl solution,
which contains the much stronger interacting Na+-Cl− pairs, but more importantly that
it has a physical basis in the εE(c) determined from dipole fluctuations.
We compared the ’sophisticated’ effective potential with a simpler Coulomb plus a Weeks-
Chandler-Andersen (WCA) potential:

Vs(r, c) =





q1 q2

4 π ε0 εE(c) r
+ kBT

[
4
(
σ

r

)12

− 4
(
σ

r

)6

+ 1

]
, r < 2

1
6σ

q1 q2

4 π ε0 εE(c) r
, r ≥ 2

1
6σ

(2)

For σ we used the WS force-field values: 0.33 nm for Na+-Cl−, 0.25 nm for Na+-Na+

and 0.44 nm for Cl−-Cl−. Note that the values for the like-charged ion pairs have little
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Figure 3: The Na+-Cl− radial distribution function for the explicit solvent (solid lines)
and implicit solvent (dotted lines) WS systems at concentrations of c = 0.1, 1 and 4.5 M,
upper, middle and lower curves respectively. The circles show the WCA model at 1 M.

influence on the results. We simulated this model under the same conditions as the
effective potential simulations, but with the dielectric permittivity scaled using reference
value of 78.5 at infinite dilution (Fig. 2). Although the radial distribution functions are
completely different (Fig. 3), the Na+-Cl− coordination matches the WS model perfectly
up to a concentration of 1.9 M. At 2.8 M it slightly underestimates the atomistic values.
Apparently the detailed minima and maxima of the effective potential are not important
for the ion coordination.
With effective potentials between ions, one can determine the osmotic pressure or osmotic
coefficient, which is difficult for simulations with explicit solvent. The osmotic coefficient
φ is defined as the pressure divided by the ideal gas pressure:

φ =
P

Pideal
=
K − Ξ

K
= 1− Ξ

K
(3)

where K is the kinetic energy and Ξ is the virial. This quantity allows for a direct compar-
ison of computer models with experiment. The values as a function of concentration are
shown for the different models as well as experiment[7] in Fig. 4. The WS model nicely
follows the experimental trend, but is slightly too low over the whole concentration range.
We also tried the WS force-field in combination with the SPC water model. Due to the
too low dielectric permittivity of 65.5, the osmotic coefficient is slightly underestimated
at lower concentrations and significantly overestimated at higher concentrations (results
not shown). Note that if one uses a fixed dielectric permittivity the osmotic coefficient is
far off at higher concentrations (Fig. 4). The WCA model is closer to the experiment,
which is surprising for such a simple model. At low concentrations this improvement is
due to the correction for the dielectric permittivity.
The properties of the WCA model depend, apart from εE(c), mainly on the parameter σ
for Na+-Cl−, the σ for the like charged pairs has little influence as they repel each other.

4. Atomistic force field accuracy

With the same procedure we have derived effective potentials for several combinations of
biomolecular force fields for Na+ and Cl− and four water models.[8] The ion potentials
in most biomolecular force fields have been parameterized on the salt crystal and/or the
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Figure 4: The osmotic coefficient as a function of the cube root of the salt concentration
for the models and experiment[7] as indicated. All models use a concentration dependent
dielectric permittivity, except for the εr = 72 curve.

ions water εE(0) φ, c=0.1 M φ, c=1.0 M φ, c=2.8 M
AMBER TIP3P 98 0.943 aggr. aggr.
CHARMM TIP3P 98 0.950 0.95 1.03
CHARMM TIP4P-Ew 65 0.898 0.85 0.86
GROMOS SPC 66 0.903 aggr. aggr.
WS SPC/E 72 0.923 0.92 1.00
WS SPC 66 0.918 0.94 1.08

experiment 78 0.932 0.94 1.05

Table 1: The osmotic coefficient φ for different force field and water model combinations as
well as experiment at three concentrations; aggr. indicates that the ions form aggregates.
Also shown are the dielectric permittivities εE(0) for the water models.

solvation free-energy of a single ion. One can therefore not expect that such force fields
reproduce the correct structure of NaCl(aq). Indeed from Tab. 1 one can see that the
osmotic coefficient differ strongly between force fields as well as water models. For the
AMBER and GROMOS force fields the first minimum of the effective Na+-Cl− potential is
too deep, which causes aggregation at higher concentrations. For the other force fields the
first minimum is less important and the properties of the solution are mainly determined
by the depth of the second minimum. Because the osmotic coefficient is very sensitive to
the interactions in the solution, this procedure can be used to verify and improve atomistic
force fields. A prerequisite for a good force field is that the dielectric permittivity of the
water model is close to the experimental value, as the effective interactions between the
ions depend strongly on this property.

5. Conclusions

We have shown that multi-body effects between solvated ions, which start playing a role
already at a concentration of 0.5 M, can be captured accurately by the use of a concentra-
tion dependent dielectric permittivity εE(c). As 1/εE depends linearly on the concentra-
tion, it can be determined from a single simulation of a small, concentrated salt solution,
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assuming that the dielectric permittivity of the water model is known. Based on these
effective potentials the ion-ion correlation functions of the explicit solvent simulations and
the experimental osmotic coefficients are reproduced up to 2.8 M. Moreover, when one is
not interested in spatial resolutions on the order of a few Ångströms, a WCA potential
performs just as well, as the excellent agreement with the experimental osmotic coeffi-
cients shows. In addition, even the ion coordination matches the WS results up to 1.9 M.
There is only one important parameter left, namely the distance of closest approach of the
cation and anion, which is set by the WCA σ, and which can be determined by matching
the ion coordination at a single concentration. This provides an extremely efficient way to
simulate the thermodynamic properties of electrolyte solutions. For the important case of
inhomogeneous systems that contain for example charged macromolecules or membranes,
we suggest that the use of a local concentration dependent dielectric permittivity will
enhance greatly the accuracy of large-scale implicit solvent simulations.

Acknowledgments

The authors acknowledge Kurt Kremer for helpful discussions and financial support from
the DFG under grants Ho 1108/11-2 and SFB 625.

References

[1] A. P. Lyubartsev and A. Laaksonen, Calculation of Effective Interaction Potentials
from Radial Distribution Functions: A Reverse Monte Carlo Approach, Phys. Rev. E
52, 3730 (1995).
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Microscopic simulations of macroscopic consequences: 
fixing the continuum and hybrid methods
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Computationally-based modeling and simulations play an increasingly impor-
tant role in modern condensed matter physics, chemistry, materials science, and 
biology [1]. In particular, such studies, allow explorations of complex phenome-
na with refined resolution in space and time. Furthermore, in some occasions 
atomistic simulations may be regarded, and used, as numerical experiments 
whose analysis guides formulation of new theoretical treatments of continuum 
nature. To discuss and illustrate the above physical and methodological issues, 
we focus first on the properties of certain fluid systems under highly confined 
conditions, including:

* Atomistic simulations of the generation, stability, and breakup of nanojets and 
liquid nano structures, in vacuum as well as in ambient environments, and the 
development of a continuum stochastic Navier-Stokes approach that includes 
size-dependent fluctuations and environmental influences, thus extending the 
range of validity of deterministic continuum hydrodynamic formulations to the 
molecular scale [2].

* Nanotribological processes, simulations and modeling the atomistic origins 
of Amontons’ law describing macroscopic frictional observations [3], layering 
transitions of highly confined liquids, and methods for the control of friction. 
In the second part of the talk we discuss hybrid methods where classical and 
quantum treatments are combined in order to explore efficiently the behavior 
of systems where the quantum part may be spatially localized, but the inclusion 
of an extended part of the systems, interacting with the localized quantum re-
gion, is essential. We illustrate such studies through recent investigation of hole 
transport and reactions of ionized DNA with water leading to mutagenesis and 
disease [4], and probing of the formation of surface and interior excess electron 
states in water clusters.
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ABSTRACT

The free energy cost of inserting a protein into a membrane is determined by consider-
ing the variation in the spectrum of thermal fluctuations in response to the presence of a
rigid inclusion. Both numerically and through a simple analytical approximation, we find
that the primary effect of fluctuations is to reduce the effective surface tension, hampering
the insertion at low surface tension. For transmembrane proteins the free energy penalty
due to this effect can be quite siginficant of the order of 10-20kBT , which is comparable
but of opposite sign to the previously calculated free energy. Thus, Our results, which
should also be relevant for membrane pores, suggest (in contrast to classical nucleation
theory) that a finite surface tension is necessary to facilitate the opening of a pore.

Bilayer membranes are self-assembled thin fluid sheets of amphiphilic molecules. They
are characterized by small bending and large compression moduli, whose effective values
are influenced by thermal fluctuations. The softness of the bending modes permit large
shape deformations which are important for the biological activities of some living cells
(e.g., the red blood cell). Biological membranes are typically highly heterogeneous: they
usually consist of mixtures of different lipids and, in addition, contain a variety of different
proteins which carry out diverse tasks such as anchoring the cytoskeleton, opening ion
channels, and cell signaling.

Membrane inclusions can modify the thermal fluctuations of the membrane by per-
turbing the local structure of the lipid matrix. It is well-known that the restrictions
imposed on the thermal fluctuations of the membrane are the origin of attractive van der
Waals-like forces between inclusions [1]. While these long-range interactions are typically
very small, they are believed to play an important role in determining the phase behavior
(e.g. aggregation) of such systems. Perturbing the spectrum of thermal fluctuations is
also expected to contribute to the free energy associated with the insertion of proteins
into lipid bilayers, which determines the distribution of proteins between the membrane
and the embedding solution. Remarkably, this important entropic contribution to the in-
sertion free energy of a single protein has been ignored in previous calculations [2]. In this
letter we wish to fill this gap in the literature and study the free energy cost of inserting
a rigid inclusion into a membrane, explicitly taking into account effects due to membrane
fluctuations. These effects will turn out to be quite significant. At low surface tension
they can greatly reduce the the thermodynamic stability of the embedded proteins. Our
results should also be relevant for the fluctuation spectrum and nucleation energy of a
membrane pore - a different type of local perturbation of the structure of lipid bilayers.
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We consider a bilayer membrane consisting of a fixed number of lipids N that spans
a planar circular frame of a total area Ap = πL2

p, in which a rigid inclusion of radius
r0 ≪ Lp has been inserted. The Helfrich energy (to quadratic order) for a nearly-flat
membrane in the Monge gauge is given by

H1 = σAp +
1

2

∫

d2~r
[

σ (∇h)2 + κ
(

∇2h
)2

]

, (1)

where σ is the surface tension, κ the bending rigidity, and h the height of the membrane
above the frame reference plane. The boundaries of integration in Eqn.(1) include the
outer (frame, r = Lp) boundary and the inner (inclusion, r = r0) edge. The Laplacian
in the Helfrich energy requires that we have two boundary conditions (BCs) for each
boundary. On the inner boundary we fix the height of the membrane h(r0) = H(φ) and
the contact slope ∂h(r0)/∂r = H ′(φ), where φ is the polar angle measured from the in-
clusion’s axis of symmetry. On the outer boundary we have the natural BCs: h(Lp) = 0
and ∇2h(Lp) = 0. The particular choice of outer BCs does not modify the free energy of
the system in the thermodynamic limit.

To gain insight into the contribution of thermal fluctuations to the insertion free energy
we write the height function as h = h0 + f where h0 is the extremum of Hamiltonian (1),
i.e.,

−σ∇2h0 + κ∇4h0 = 0, (2)

subject to the BCs that h0(r0) = H(φ), ∂h(r0)/∂r = H ′(φ), h0(Lp) = 0, and ∇2h0(Lp) =
0. This implies f(r0) = 0 and ∂f(r0)/∂r = 0 on the inner boundary, and f(Lp) = 0 and
∇2f(Lp) = 0 on the outer boundary. The Helfrich energy can be written as

H1 (h0 + f) = σAp +

∫

d2~r

{

1

2

[

σ (∇h0)
2 + κ

(

∇2h0

)2
]

+
[

σ∇h0 · ∇f + κ∇2h0∇
2f

]

+
1

2

[

σ (∇f)2 + κ
(

∇2f
)2

]

}

. (3)

For the cross term (third term in H1) we obtain, upon integration by parts,
∫

d2~r
[

σ∇h0 · ∇f + κ∇2h0∇
2f

]

=

∫

d2~r
[

−σ∇2h0 + κ∇4h0

]

f

+

∫

∂M

κ∇2h0 (n̂ · ∇) f +

∫

∂M

(n̂ · ∇)
[

σh0 − κ∇2h0

]

f, (4)

where the last two integrals in the above equation are performed on the boundaries of the
system, and n̂ is a unit vector normal to the boundaries. The boundary terms in Eqn.(4)
vanish since f = 0 and n̂ ·∇f = −∂f/∂r = 0 on the inner boundary, and f = 0 and ∇2h0

on the outer boundaries. The bulk term also vanishes by virtue of Eqn.(2).

Without the cross term in Eqn.(3), we are left with three terms: the projected area
term σAp, the equilibrium term depending on h0, and the fluctuation term depending on
f . Thus, the energies associated with h0 and f completely decouple and their contribu-
tions to the free energy are additive. Note that in our approach the equilibrium part of
the free energy includes a contribution from the height and tilt fluctuations of the inclu-

sion. It is obtained by calculating the dependence of h0 on the boundary values H(φ) and
H ′(φ), and performing an appropriate thermal average over these quantities. Other ener-
getic components, such as hydrophobicity, translational entropy, electrostatics, should be
added to the equilibrium term, and can be included in its definition [3]. The equilibrium
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term has been analyzed in many previous studies [2]. Its magnitude is protein specific
and is usually in the range of −5 to −20kBT [4]. In contrast, the effect of membrane

fluctuations on the insertion free energy has not yet been considered in the literature.
We proceed to calculate the fluctuation part of the insertion free energy. Note that it
is independent of the height and the contact angle of the inclusion (and their thermal
fluctuations), which affect only the equilibrium part1.

Neglecting the equilibrium term, we are left with the projected area and the fluctuation
terms. By integrating the latter by parts twice, the remaining Hamiltonian takes the form

H2(f) = σAp +
1

2

∫

d2~rf
(

−σ∇2 + κ∇4
)

f. (5)

The boundary terms vanish in the above expression due to our choice of BCs: f(r0) = 0,
∂f(r0)/∂r = 0, f(Lp) = 0, and ∇2f(Lp) = 0. We proceed by expanding the function
f in a series of eigenfunctions fm,n(r) of the operator L ≡ −σ∇2 + κ∇4: f(r, φ) =
∑

m,n hm,nfm,n(r)eimφ. The functions fm,n(r) can be written as the linear combination of
the Bessel functions, Jm(r) and Ym(r), of the first and second kinds of order m, and the
modified Bessel functions of the first and second kinds of order m, Km(r) and Im(r):

fm,n(r) = AJm(λm,n
1 r) + BYm(λm,n

1 r) + CKm(λm,n
2 r) + DIm(λm,n

2 r),

where the λi (i = 1, 2) are the positive solutions of (−1)i+1σ(λm,n
i )2 + κ(λm,n

i )4 = µm,n,
and µm,n is the eigenvalue corresponding to the function fm,n(r): Lfm,n(r) = µm,nfm,n(r).

Applying the BCs at r0 and Lp, we derive the eigenvalue equation

λ1 [Im(λ2r0)Km(λ2Lp) − Im(λ2Lp)Km(λ2r0)] [Y
′

m(λ1r0)Jm(λ1Lp) − J ′

m(λ1r0)Ym(λ1r0)] =
λ2 [K ′

m(λ2r0)Im(λ2Lp) − I ′

m(λ2r0)Km(λ2Lp)] [Jm(λ1r0)Ym(λ1Lp) − Jm(λ1Lp)Ym(λ1r0)]
(6)

(for brevity, we have omitted the superscript (m, n) from the notation of the λi in the
above equation). In contrast, for membranes without inclusions, we solve the simple equa-
tion Jm(λ1Lp) = 0. It is interesting to note that, in the limit that λm,n

1 r0 ≪ |m|, Eqn.(6)
reduces to the eigenvalue equation in the absence of inclusions. This has the physically
appealing interpretation that modes with characteristic lengths much larger than the in-
clusion radius are hardly perturbed by its presence. In the opposite limit, λm,n

1 r0 ≫ |m|
(which also implies λm,n

1 Lp ≫ |m|), we can neglect terms proportional to Im(λm,n
i Lp)

(which, otherwise, become exponentially large) and replace the remaining Bessel functions
by their leading order asymptotic expressions. This gives, for λm,n

1 ≫
√

σ/κ, the simple
equation tan [λm,n

1 (Lp − r0)] = 1, and the solutions λm,n
1 ≈ [|m|/2 + n + (−1)m π/4]π/(Lp−

r0). The physical interpretation of this result is that the inclusion acts like a hard wall
for modes with characteristic lengths much smaller than its radius. The effective linear
size of the membrane for these modes is reduced from Lp to Lp − r0 and the eigenvalues
in this regime increase by roughly a factor of Lp/(Lp − r0). Thus, the dominant effect of

1The inner boundary reflects the projection of the cross-sectional area of the inclusion onto the frame
reference plane. In the above derivation, we consider a circular boundary with a fixed radius r = r0.
However, the locus of the inner boundary depend on the tilt angle of the inclusion and varies accordingly.
A straightforward calculation [7] shows that if the tilt angle is small (i.e., when the inner boundary only
slightly deviates from circularity) then the boundary of integration in Eqn.(1) can be still taken as circular
at the expense of introducing an additional boundary term in the Hamiltonian. The new boundary term
has no influence on the membrane fluctuations which are governed by the surface Hamiltonian only.
Therefore, and for the sake of the simplicity of our derivation, we have dismissed this extra boundary
term and its derivation from the discussion.
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the inclusion on the short wavelength modes is to lower the density of contributing modes
in “λ-space” [Note that λm,n+1

1 − λm,n
1 = π/(Lp − r0)].

When the function f(r, φ) =
∑

m,n hm,nfm,n(r)eimφ is substituted in Hamiltonian (5),
we find, due to the orthogonality the eigenfunctions

∫ 2π

0

dφ

∫ Lp

r0

rdr fm1,n1(r)fm2,n2(r)e
i(m1+m2)φ = a0 δm1,−m2 δn1,n2, (7)

that the modes decouple and that the Hamiltonian takes a quadratic form in the am-
plitudes |hm,n|. The normalization coefficient a0 in Eqn.(7) is the projected area per
amphiphilic molecule in the bilayer. Tracing over |hm,n| leads to the following expression
for the Gibbs free energy associated with Hamiltonian H2 [5]

G (σ, Ap) = σAp +
kBT

2

∑

m,n

ln

{

[σ(λm,n
1 )2 + κ(λm,n

1 )4] Apλ
2
dB

2πkBTN

}

, (8)

where λdB is the thermal de-Broglie wavelength of the lipids. The Helmholtz free energy
is given by F (A, Ap) = G−σA, where the total membrane area A is related to the surface
tension by 2

A ≃ Ap +
kBT

2

∑

m,n

1

σ + κ(λm,n
1 )2

. (9)

Assuming that the membrane is incompressible and, therefore, that its total area is fixed,
we can use Eqn.(9) to derive the following equation, relating the surface tension and the
inclusion’s radius

−πr2
0 +

kBT

2

∑

m,n

1

σ + κ(λm,n
1 )2

−
1

σ0 + κ(λm,n

1,(0))
2

= 0. (10)

In the above equation λm,n

1,(0) are the corresponding solutions of the eigenvalue equation in

the absence of the inclusion (r0 = 0): Jm(λm,n

1,(0)Lp) = 0, and σ0 ≡ σ(r0 = 0). The solution

to Eqn.(10) has the form

σ = σ0(1 + δ), where δ ∼ O(r0/Lp)
2. (11)

The projected area and fluctuation parts of the insertion free energy ∆F (r0) ≡ F (r0) −
F (0) can now be calculated using Eqs.(8) and (10). We find that ∆F (r0) is given by

∆F (r0) ≈ −πσ0r
2
0 +

kBT

2

∑

m,n

ln

[

σ0(λ
m,n
1 )2 + κ(λm,n

1 )4

σ0(λ
m,n

1,(0))
2 + κ(λm,n

1,(0))
4

L2
p − r2

0

L2
p

]

. (12)

Note that only σ0 appears in the above expression, which is due to Eqn.(11) and the fact
that we attempt to calculate ∆F (r0) only up to quadratic order in r0/Lp. For the same
reason we can use σ0 rather than σ in the eigenvalue equation (6). The surface tension
appears implicitly in this equation, through the relation λ2

2 = λ2
1 + σ/κ. In expression

(12) we assume that the number of molecules forming the bilayer membrane does not
change with the insertion of the protein. Consequently, the total number of modes which
is directly proportional to the number of molecules in the bilayer is kept constant. In
contrast, the projected area per molecule [which appears in Eqn.(7)] does depend on the

2Corrections to this relation can be neglected when the tilt angle and height of the membrane on the
inner boundary are small: H ′ ≪ 1, HH ′ ≪ r0.
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Figure 1: The insertion free energy ∆F as a function of the inclusion’s radius for κ =
10kBT and various values of σ0. The inset to graph (a): a log-log plot of the numerical
results for σ0 = 0. The slope of the straight dotted line is 2.

radius of the inclusion, and this is the origin of the term (L2
p − r2

0)/L
2
p appearing in the

argument of the logarithm in Eqn.(12). The first term on the right hand side (r.h.s.) of
Eqn.(12) comes from the reduction of the projected area. We will now show that, to a
good approximation, the second term on the r.h.s. of Eqn.(12) is quadratic in r0 and,
thus, can be interpreted as a thermal correction to the surface tension.

In order to obtain an analytical result for the free energy (12), we make the approx-
imation [based on our discussion of the asymptotic behavior of the eigenvalues λm,n

1 , see
the text after Eqn.(6)] that eigenvalues such that λm,n

1 r0 < α|m| (long wavelength) are
not affected by the inclusion, whereas modes with λm,n

1 r0 > α|m| (short wavelength) grow
by a factor Lp/(Lp − r0). The numerical constant α is of the order of unity and its value,
which may depend on the surface tension σ0, will be determined later by an exact numer-
ical evaluation of ∆F . We have verified numerically that this asymptotic form is indeed
correct. We set n = 0, 1, . . . ,

√
N0, and, m = −

√
N0, . . . ,

√
N0 so that the total number

of modes (degrees of freedom), 2N0, is proportional to the number of molecules forming
the membrane, N . Along with these approximations, we evaluate the sum in equation
(12) as an integral, giving us the simple result (correct up to quadratic order in r0) that
∆F = −π(σ0 − σ∗)r2

0, where

σ∗ =
kBT

παℓ2
0

{

2 − α −

(

ℓ0

πξ

)2

ln

[

(

πξ

ℓ0

)2

+ 1

]}

, (13)

ξ =
√

κ/σ0, and ℓ0 = Lp/
√

N0 is a microscopic length cutoff on the order of the char-
acteristic size of a membrane molecule. We thus obtain the result that the fluctuations
renormalize the surface tension. It is interesting to note that this renormalization tends
to occur with the opposite sign as the bare surface tension (for ℓ0 . ξ), thus making it
harder to insert an inclusion. Only for very stressed membrane (ξ . ℓ0) does σ∗ become
negative. This is due to the reduction of the projected area that allows more thermal
fluctuations. A more careful analysis of the long wavelength modes shows that these con-
tribute only finite-size effects to the free energy which vanish in the limit of Lp ≫ r0.

We have numerically solved the eigenvalue equation (6) and used the solutions to
evaluate the sum in Eqn.(12). Numerical values of ∆F (r0) (for κ = 10kBT and various
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values of σ0) are shown in Fig.1 (a)-(b). They have been extracted by extrapolating the
numerical results obtained for several values of 750 ≤ N0 ≤ 2000 to the thermodynamic
limit N0 → ∞. In the inset to Fig.1 (a), the results for σ0 = 0 are replotted on a loga-
rithmic scale, showing that our prediction of a quadratic relation between ∆F and r0 is
attained only for large inclusions with r0 & 100ℓ0 (the slope of the straight dotted line is
2). This is a typical size for colloidal particles [6]. The value of the constant α appearing
in Eqn.(13) shows a slight dependence on the surface tension varying from 1.59 for σ0 = 0
to 1.72 for ξ =

√

κ/σ0 = 5l0/π. The solid curves in Fig.1 (a)-(b) depict our analytical
expression for ∆F , with α determined by fitting the results for large r0 to Eqn.(13). From
Fig.1 (a) we conclude that, because of thermal fluctuations, there is a free energy penalty
to embedding an inclusion in a weakly stretched membrane (small σ0). For transmem-
brane proteins with typical radii of r0 . 5ℓ0, the energy cost is ∆F . 25kBT , which is
comparable to the equilibrium contribution but of opposite sign. This demonstrates the
importance of the membrane fluctuations in determining the distribution of transmem-
brane and free proteins. For larger inclusions, the fluctuation free energy will dominate
the equilibrium part. On the other hand, Fig.1 (b) shows that inclusions greatly reduce
the free energy of strongly stretched membranes (large σ0). The primary reason that the
free energy is lowered in this regime is the reduction of the projected area. These results
should also be relevant for the question of nucleation of a membrane pore which, albeit
more complicated, can be studied by similar approach [7]. They suggest that there exists
a (finite!) critical value of the surface tension below which pores cannot open and above
which they grow without bounds. Classical nucleation theory, which ignores fluctuations
effects, predicts that the critical surface tension is zero [8].

In summary, we have computed the free energy of inserting an inclusion into a mem-
brane. We explicitly calculated the contribution of membrane fluctuations. The primary
effect of these fluctuations is to reduce the effective value of the surface tension. At low
surface tension it provides a positive component to the free energy of an embedded inclu-
sion, thereby impeding the insertion of transmembrane proteins. The sensitivity of the
free energy to variations of the surface tension suggests that, by controlling the membrane
surface tension appropriately, one may control the thermodynamic stability of embedded
proteins and, thus, the equilibrium distribution between proteins inserted in the mem-
brane and in solution.

Acknowledgments: We thank M. Kardar, A.W.C. Lau, and P. Pincus for useful dis-
cussions.

References

[1] R. Bruinsma, P. Pincus, “Protein aggregation in membranes”, Curr. Opin. Solid State
Mater. Sci. 1, 401 (1996); M. Kardar, R. Golestanian, “The ”friction” of vacuum, and
other fluctuation-induced forces”, Rev. Mod. Phys. 71, 1233 (1999), and references
therein.

[2] S. May, “Theories on structural perturbations of lipid bilayers”, Curr. Opin. Colloid
Interface Sci. 5, 244 (2000); M.B. Partenskii, P.C. Jordan, “Membrane deformation
and the elastic energy of insertion: Perturbation of membrane elastic constants due
to peptide insertion”, J. Chem. Phys. 117 10768 (2002), and references therein. An
exception is the discussion in R.R. Netz, “Inclusions in fluctuating membranes: Exact
results”, J. Phys. I (France) 7, 833 (1997).

Biomaterials

649



[3] A. Ben-Shaul, N. Ben-Tal, B. Honig, “Statistical thermodynamic analysis of peptides
and protein insertion into lipid membranes”, Biophys. J. 71, 130 (1996).

[4] T. Lazaridis, “Effective energy function for proteins in lipid membranes”, Proteins
52, 176 (2003), and references therein.

[5] P. Sens, S. A. Safran, “Pore formation and area exchange in tense membranes”,
Europhys. Lett. 43, 95 (1998).
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Scanning Probe Microscopy of Cytoskeleton Networks
Agnes Ostafin

University of Utah, Material Science and Engineering - Bioengineering, Center for Molecularly Engineered                     
Materials, 84112 Salt Lake City, USA

The advent of scanning probe microscopies (SPM) suitable for the study of biolo-
gical specimens at near physiological condition, such as atomic force microscopy 
(AFM) and near field scanning optical microscopy NSOM provides an intriguing 
glimpse at the architecture and mechanical properties of complex protein net-
works of the cell membrane.  How these techniques can be used to extract quan-
titative information at the molecular level about protein networks that would 
be useful for modeling and identification of specific disease states remains a 
technological challenge.  In this presentation, some of the achievements and 
challenges of using SPM to study cellular membranes will be reviewed. Our re-
cent work developing a systematic method for quantifying architectural details 
from AFM images, allows the use of voxel counting to identify comparable spe-
cimen images, and pixel histogramming to evaluate the degree of architectural 
shift as a consequence of disease and mutation in human and murine cytoskele-
ton assemblies in vitro. The principles behind using surface tension to generate 
pico-Newton level forces to rupture weak associations will also be described. 
This method, which generates membrane tension by the specific attachment 
of membranes to a surface prior to air drying, has been applied to understand 
the effects of calcium ions, cellular aging, and disease on the resiliency of the 
cytoskeleton network in vitro.
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The Mechanics of Retrovirus Replication Cycle
Itay Rousso

Weizmann Institute of Science, Dept. of Structural Biology, 76100 Rehovot, Israel

Following budding from the host cell, retroviruses undergo a process of internal 
reorganization called maturation, which is prerequisite to infectivity. Viral ma-
turation is accompanied by dramatic morphological changes, which are poorly 
understood in physical/mechanistic terms. A study of the mechanical properties 
of live mature and immature murine leukemia virus and HIV particles by inden-
tation type experiments conducted with an atomic force microscope tip will be 
presented. We find that both mature and immature particles have a structured 
shell. Our results are the first analysis of the mechanical properties of an animal 
virus, and demonstrate a linkage between virus morphology and mechanical 
properties. More importantly, we find a striking correlation between HIV me-
chanical properties and its ability to fuse with target cells. Our work establishes 
the groundwork for further investigation of a possible link between mechanical 
properties of a virus and biological function.
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Theory of cell adhesion and elasticity
S. Safran 1, A. Besser 2, R. De 1, A. Nicolas 3, A. Zemel 1

 1Dept. Materials and Interfaces, Weizmann Institute of Science, Herzel Street, 76100 Rehovot, Israel
 2Ruprecht-Karls-University of Heidelberg, URZ, Im Neuenheimer Feld 293, 69120 Heidelberg, Germany

 3Laboratoire de Physique de la Matiere Condensee, UMR 6622, Parc Valrose, 06108 Nice cedex 2, France

Forces exerted by adherent cells are important for many physiological processes 
such as wound healing and tissue formation. By pulling on their environment, 
cells sense rigidity gradients, boundaries and strains induced by the presence 
of other cells. Cell adhesions are composed of proteins that form condensed 
domains that grow in the direction of externally applied or internal, cytoskeletal 
forces. Theoretical models require a multiscale approach beginning with the ad-
soprtion dynamics of individual proteins whose collective behavior determines 
the growth of micron-sized adhesions. The results for this single-cell behavi-
or are then used to predict the elastic properties of an ensemble of cells, each 
of which is actively exerting forces on an elastic matrix.  The adhesion forces 
generated by a collection of cells in a tissue significantly alter the overall elas-
tic response of the system.  We present a theoretical model for the adsorption 
of adhesion proteins from the cell interior to the adhesion site and predict the 
resulting, force-sensitive anisotropic growth.  The ensemble of cells is treated 
by introducing the elastic analogy of the dielectric constant of the medium to 
predict the average cell polarization, their orientational order, and the effective 
material constants.
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Mechanical behavior of single living fibroblasts by micro force sensors 
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ABSTRACT 
 
 

The importance of studying the mechanical behavior of single living cells has been 
recognized. Here, by using a micro force sensor, we measure the detaching force response of 
a cell from the sensor probe, and observe the response of the actin network due to the 
disturbance of the sensor probe.  
 
 
1. Introduction 
 
Living cells are always subjected to mechanical stimuli originating from their extracellular 
and intracellular environments. They respond to mechanical stimuli not only mechanically but 
also biologically. Ranging from adhesion strength to stretch/indentation force response, the 
mechanical behavior of single living cells has been extensively reported for the past 20 years 
[1]. Adhesion strength between cells and their substrates and between two cells was 
measured, for example, by shear flow and micropipette aspiration techniques [2,3]. But, 
monitoring of the force response during the cell detachment is rare. By using a 
microcantilever to push against a cell, the force-displacement relationship was measured 
during the detachment process of murine fibroblasts from a substrate [4]. But, the detaching 
force response during the cell stretch process has not yet been fully explored.  
 
In situ visualization of the response of the actin network inside the cells during mechanical 
perturbation offers clues on the mechanism of cell force response due to deformation. 
Heidemann et al. carried out direct observations of the cytoskeleton in green fluorescent 
protein (GFP)-actin transfected fibroblasts while deforming the cells by glass needles [5]. 
Kumar et al. quantified the viscoelastic retraction of dissected single living stress fibers in 
enhanced yellow fluorescent protein (YFP)-actin transfected endothelial cells by a laser 
nanoscissor [6]. In this paper, we measure the detaching force response during the cell stretch 
process by a micromachined force sensor. The response of the actin network due to the 
disturbance of the sensor probe is observed.  
 
 
2. Materials and Methods 
 
Fig. 1 shows the sensor, which is made of single crystal silicon. Here, the probe is used to 
contact the cell, and the two fixed-fixed flexible beams are used to measure the cell force 
response. Each of the beam is 1.96 mm long, 1.18 µm wide (in plane), and 4.99 µm deep. The 
probe is 5.0 µm wide. The sensor was fabricated by the SCREAM process [7], and the spring 
constant of the sensor was calibrated as 23 nN/µm. The cells were monkey kidney fibroblasts 
(MKFs), cultured from the cell line CV-1 (ATCC). The cells were transfected with the 
pEGFP-actin vector (BD Biosciences Clontech) to visualize the cytoskeletal actin network 
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Figure 1. (A) Schematic drawing of the force sensor, and (B) SEM image of its probe part.  
 
inside the cells by fluorescence.  
 
 
3. Results and Discussion 
 
Fig. 2 shows the measured detaching force response during a cell stretch process by a 
micromachined force sensor. In this experiment, the probe was coated with RGD (Arg-Gly-
Asp) and brought in contact with the cell (initially slightly compressed) to form adhesion 
between the cell and the probe. The probe was then gradually moved away to detach the cell 
from the probe by a piezo actuator. The time between any two consecutive data points was 
kept at 1 min.  We  see that the  detaching  force  response  increases at the  initial cell  stretch 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Detaching force response of a fibroblast. (A) Detaching force response versus probe 
movement, and (B)-(D) Three phase contrast images of the fibroblast and the micro probe. 
The horizontal misalignment between the measurement point and the reference point shows 
the deflection of the flexible beams and hence is the measure of the force response.  
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Figure 3. Response of the actin network in an MKF due to the contact of a probe with the cell. 
The fluorescent images (min:s) are before (A) and after (B) the contact.  
 
stage, then decreases after it reaches its maximum, which may be attributed to the gradual loss 
of contact between the cell and the probe. The force response of a cell while it is detached 
from a substrate shows similar characteristics – a force peak followed by a decay over large 
deformation [4].  
 
In Fig. 3, the sensor probe was positioned above a GFP-actin transfected MKF. The probe 
was then lower down to gently touch the right most lamellipodium of the cell. Fig. 3A shows 
the intact actin network of the cell. Fig. 3B shows the actin network 71 s after the touch of the 
probe. We see, due to the disturbance of the probe, the right most lamellipodium detached 
from its substrate and contractively curled back towards the central part of the cell body.  
 
 
4. Conclusions 
 
The detaching force response of a cell from a force sensor micro probe due to stretch has been 
shown to have a force peak followed by a long force decay tail with displacement. The 
detachment is thus not abrupt. Contractive curling of stress fibers in the cell due to 
mechanical contact with the probe is observed.  
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From DNA to chromatin: the physics of DNA compaction 
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ABSTRACT 
 
 

Chromatin fibers exit in dense and open states, presumably reflecting their corresponding 
genetic activity. Here we outline a physical theory that describes opening and closing of 
chromatin fiber as the result of the interplay between electrostatic attraction of nucleosomes 
and the elasticity of the DNA backbone of the fiber. 
 
 
1. Introduction 
 
The genomic DNA and the histone proteins compacting it into the chromatin complex 
comprise most of the contents of the nucleus. In every human cell, for instance,  base 
pairs (bp) of DNA – corresponding to a total length of about 2 meters – must be packed to fit 
into a more or less spheroid nuclear volume about 10 µm in diameter [1]. Not only has the 
DNA to be compacted, it also still needs to be accessible to enzymes acting on it, such as 
replication, transcription and repair machineries, and regulatory factors.  

9106×

Nature has solved this formidable task by compacting DNA in a hierarchical fashion as 
schematically depicted in Figure 1. Describing such a complex system with many different 
length-, time- and energyscales requires a multiscale approach to the problem. The purpose of 
this conference paper is to outline a first attempt for a self-consistent description of the first 
three length levels of this hierarchy (DNA, nucleosome, chromatin fiber). 
 

 
 

Figure 1. The hierarchical steps of DNA folding into chromatin: (1) DNA (2) “10-nm fiber” 
and (3) 30-nm chromatin fiber. Details of the higher order structures are largely unknown. 
 
The first step in DNA compaction is the formation of the nucleosome, the elementary 
chromatin unit: 147 bp DNA wrapped in 1 and 43  turns around an octamer of histone 
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proteins and a section of free linker DNA of 20-80 bp length. The histone octamer with the 
wrapped DNA, called nucleosome core particle (NCP), has been determined by X-ray 
crystallography to atomic resolution [2]. At low ionic strengths, the polynucleosome chain 
forms a bead-on-a-string structure (“10 nm fiber”) that under physiological ionic conditions 
condenses into a fiber with approximately 30 nm diameter, cf. Fig. 1. Its detailed structure in 
this state is still under debate. 
Two classes of models were proposed for the arrangement of the NCPs inside the 30 nm fiber: 
the solenoid models [3] and the zig-zag models [4]. In the solenoid model the NCPs are 
packed one by one along a solenoid helix in the same order as they follow along the chain. 
The linker DNA is bent in order to allow this geometric arrangement. In the zig-zag model 
straight linkers connect NCPs located on opposite sides of the fiber. The NCPs are also 
arranged in a helical order, but neighbors in space are second neighbors along the chain. We 
will argue that chromatin fibers feature geometries intermediate between those two. 
 
 
2. Condensation-decondensation transition 
 
The fiber geometry of the zig-zag model can be quantitatively described in terms of two 
angles: the entry-exit angle θπ −  of the linker DNAs at each NCP and the twist angle φ  
between successive NCPs on the chain [5]. For real chromatin fibers those angles vary along 
the fiber but certain values seem to be preferred. For constant angles we obtain regular fibers 
as shown in the diagram of states, Fig. 2, with the two axes representing the two angles. 
Example structures include planar structures for 0=φ  (2-5) and πφ =  (6,7), helical 
arrangements (9) and crossed linker fibers (10). The black area with the intricate boundary 
corresponds to forbidden structures where NCPs would overlap. 
 

 
Figure 2. Left: Diagram of two-angle fiber geometries. Right: Fiber condensation-
decondensation transition (see text for details). 
 
The two-angle model is purely geometrical. No energies are involved. Clearly this is an 
oversimplification: NCPs are connected via bendable and twistable DNA linkers. For a given 
fiber geometry, i.e., a given set of angles ( )φθ , , one can analytically calculate all the linear 
elasticity constant of the DNA linker backbone [1]. A crossed-linker geometry, for instance, 
features lots of DNA sections crossing back and forth between the NCPs and one finds that 
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such a fiber is extremely soft, e.g. around 1000 times more extensible than naked DNA (cf. 
the softness of a normal spring compared to that of the material it is made of). In addition 
NCPs show electrostatic attraction whose strength is under biochemical control via the 
acetylation (“uncharging”) and deacetylation (“charging”) of the histone tails, flexible 
extension of the eight histone proteins [6].  
All this indicates that it is necessary to go beyond the simple purely geometric description of 
the two-angle model and to come to a model that self-consistently takes into account DNA 
bending, nucleosomal interaction and thermal effects. Here we sketch an approach that is still 
too naïve for the complexity of the problem but at least gives an idea of some basic issues. A 
more coherent approach will be presented in the MMM 2006 talk in Freiburg. 
For simplicity we here neglect thermal effects that could be brought in at a later stage by 
assuming a larger effective diameter of the NCPs. Now, even in the absence of thermal 
fluctuations, i.e. at zero temperature, the fiber geometries with straight linkers given in Fig. 2 
do not correspond to ground states if the nucleosomes interact energetically with each other. 
Consider a fiber with a set of values ( )φθ , , where the NCPs are not in contact for unbent 
DNA linkers, corresponding to a structure away from the excluded volume boundary in Fig. 
2. Without attraction between the NCPs this fiber is very soft, and would show large shape 
fluctuations at finite temperatures.  
Suppose that we switch now on an attraction between the NCPs. Then, if this attraction is 
strong enough, the attraction overcomes the DNA linker elasticity and the fiber condenses 
into a dense fiber with the NCPs in contact, the fiber being located on the excluded volume 
boundary in Fig. 2. This fiber is very stiff since bending is costly due to the excluded volume 
of the NCPs. In addition this structure represents a “spring under tension”. Switching off the 
nucleosomal attraction will lead to a big jump back into the open and soft fiber. This is 
demonstrated on the rhs of Fig. 2 for a two-angle fiber with ( ) ( )ππφθ 26.0,31.0, =  and linker 
length . The decondensed fiber (D) corresponds to the ground state for zero-
attraction. A condensed fiber (C) occurs for an attraction of 

nm14.7
TkE B1int −=  between NCPs in 

contact that is strong enough to induce a new ground state with densely packed NCPs at new 
effective angles ( ) ( )ππφθ 24.0,67.0, =effeff . It is speculated that such dense fibers with 
deacetylated, i.e. sticky NCPs, correspond to silent regions without gene expression [7].  
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Computational Modeling of Cell and Molecular 
Mechanics and Human Disease States

Subra Suresh
MIT, Room 4-140, Dept of Materials Science and Engineering, 77 Mass Ave., 02139-4307 Cambridge, United States 

of America

In this presentation, we provide examples, from our own work and from the li-
terature, of how cell and subcellular mechanics influence, and are influenced by, 
the onset and progression of human diseases.  For this purpose, a broad range 
of diseases are considered:  (1) an infectious disease arising from the invasion of 
the human erythrocyte by the malaria-causing parasite, Plasmodium falciparum, 
(2) several hereditary hemolytic disorders affecting the human erythrocyte, in-
cluding sickle cell disease, spherocytosis, elliptocytosis and Asian ovalocytosis, 
and (3) different types of tumors.  In each case, the discussion will focus on how 
biochemical changes to the appropriate cell type lead to significant molecular 
reorganization of the intracellular cytoskeleton, and how these changes in turn 
influence the deformability, cytoadherence and motility of the affected cells.  
Possible mechanistic origins of disease states in response to these changes are 
then explored.  Particular emphasis will be placed on the role of detailed com-
putational simulations of single-cell and cytoskeletal network deformation on 
the overall mechanical characteristics, and its dependence and influence on di-
sease states.
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Cellular shape formation driven by aggregation of 
membrane proteins.

Alex Veksler
Department of Chemical Physics, Weizmann Institute of Science, P.O.B. 26, 76100 Rehovot, Israel

Many cell types are not motile but evolve a specific shape, in accordance with 
their function. One example is the various cells in the brain: from the highly 
branched neurons to the more compact glial cells. We propose to model the 
overall cell shape when it is driven by the following mechanisms: (i) some pro-
teins have a spontaneous curvature, hence tending to aggregate on the face 
of cell membrane and form curved aggregates (buds, invaginations), (ii) when 
these proteins initiate the growth of actin filaments on the internal side of the 
membrane, protrusions of various length and width appear on the membrane: 
dendrites, microvilli, podosomes etc. We propose a continuous non linear mo-
del for the protrusions formation which combines the effects of protein interac-
tions, bending dynamics and the driving force of actin polymerization. The rele-
vant length scales vary between a few intermolecular distances and the whole 
cell. The linear stability analysis and the (nonlinear) perturbation theory were 
applied to the model. The effect of the essential feedback factors, such as the 
ATP production and Ca concentration, on the actin growth rate, were examined. 
The results were compared to the experiments.
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