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Foreword 
 
Computational modeling of materials behavior by multiscale materials modeling (MMM) 
approaches is becoming a reliable tool to underpin scientific investigations and to complement 
traditional theoretical and experimental approaches of component assessment. At transitional 
(microstructural) scales continuum approaches begin to break down and atomistic methods 
reach inherent limitations in time and length scale. Transitional theoretical frameworks and 
modeling techniques are developed to bridge the gap between the different length scales. 
 
Industrial success in high technology fields relies on the possibility to specifically engineer 
materials and products with improved performance. The success factor is the ability to make 
these material related developments timely at relatively low-costs. This demands not only the 
rapid development of new or improved processing techniques but also better understanding and 
control of material chemistry, processing, structure, performance, durability, and their 
relationships. This scenario usually involves multiple length and time scales and multiple 
processing and performance stages, which are usually only accessible via multi-scale / multi-
stage modeling or simulation. 
 
In high-payoff, high-risk technologies such as the design of large structures in the aerospace and 
nuclear industries, the effects of aging and environment on failure mechanisms cannot be left to 
conservative approaches. Increasing efforts are now focused on advancing MMM approaches to 
develop new material systems components and devices. Appropriate validation experiments are 
crucial to verify that the models predict the correct behavior at each length scale. Thus, one of 
the advantages of these MMM approaches is that, at each scale, physically meaningful 
parameters are predicted and used in models for subsequent scales, avoiding the use of 
empiricism and fitting parameters. 
 
Recent interest in nanotechnology is challenging the scientific community to design nanometer 
to micrometer size devices for applications in new generations of computers, electronics, 
photonics or drug delivery systems. These new application areas of multiscale materials 
modeling require novel and sophisticated science-based approaches for design and performance 
evaluation. Theory and modeling are playing an increasing role to reduce development costs and 
manufacturing times. With the sustained progress in computational power and MMM 
methodologies, new materials and new functionalities are increasingly more likely discovered by 
MMM approaches than by traditional trial and error approach. This is part of a paradigm shift in 
modeling, away from reproducing known properties of known materials towards simulating the 
behavior of hypothetical composites as a forerunner to finding real materials with these novel 
properties. 
 
The MMM 2006 conference provides an international forum for the scientific advances of 
multiscale modeling methodologies and their applications. 
 
I would like to thank the members of the international advisory committee, the local program 
committee and particularly the organizing team, the symposium organizers and the session 
chairs and the University of Freiburg for their engagement and support. Without their hard work 
and their devotion of time and ressources, the Third International Conference Multiscale 
Materials Modeling would not have been possible.  
 
Finally, I would like to thank our conference sponsors for their financial support: The German 
Research Foundation DFG, Accelrys Inc., Plansee S.E. and the Ministry of Science, Research and 
Art, Baden-Württemberg. 
 
Peter Gumbsch 
Conference Chair 
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Computational Coarse-graining for the strength of 
materials
Amit Acharya

Civil & Environmental Engineering, Carnegie Mellon University, 15213 Pittsburgh, United States of America

We present an invariant-manifold-theory inspired computational approach to 
the problem of coarse-graining autonomous system of ODE (fine system). Coar-
se variables are introduced as either functions of the fine state or time-averages 
of functions of the fine state. The objective is to come up with a closed theory 
of evolution for the coarse variables. Application to a model problem in phase 
transformation (Abeyaratne-Chu-James wiggly energy problem) and strength 
of materials (Frenkel-Kontorova model) will be demonstrated. We discuss how 
the method explains the emergence of memory and stochastic effects in coarse 
response. We then outline a procedure for the selection of a small number of 
coarse variables that is designed to allow for an autonomous coarse response, 
thus leading to unambiguous initialization as a function of the coarse state.

Part of this work was done jointly with Aarti Sawant.
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Evolution of Interfaces and Boundaries in Solids: Phase Field
Models

Hans-Dieter Alber, Zhu Peicheng

Department of Mathematics, Darmstadt University of Technology,
Schlossgartenstraße 7, 64289 Darmstadt, Germany

alber@mathematik.tu-darmstadt.de, zhu@mathematik.tu-darmstadt.de

ABSTRACT

The evolution of phase interfaces in solids showing martensitic transformations and the
evolution of interfaces in solids by interface diffusion are usually described by sharp inter-
face models. In simulations it is however advantageous to use diffusive interface models.
Such models should also be useful in proving that solutions of the sharp interface models
exist. We found that these sharp interface models can indeed be transformed to mod-
els with diffusive interfaces. We sketch these transformed models. The models contain
evolution equations for the order parameter, which differ from the Allen-Cahn and Cahn-
Hilliard equations only by a term containing the gradient of the order parameter.

1. Diffusion dominated and martensitic phase transformations

An interface between different material phases moves if the crystal lattice in front of the
interface is transformed from one crystal structure to the other. Such transformation pro-
cesses can be diffusion dominated or diffusionless. Transformations belonging to the first
type are triggered by diffusion processes. An example is the γ–γ′ phase transformation in
Ni-Al superalloys, where the phase interface is moving by diffusion of aluminium atoms
in the crystal lattice.

Diffusionless transformations are also called martensitic. In a material showing marten-
sitic transformations the free energy has local minima at two or more differing configura-
tions of the crystal lattice. The lattice can switch between these configurations without
associated diffusion processes. In a particular configuration the material is stress free at
the values of the strain tensor corresponding to this configuration of the crystal; since the
crystal structure, and hence also these values of the strain tensor, change along the phase
interface, this interface is a surface of discontinuity for the stress free strain states. The
difference ε of the stress free strain tensors is called transformation strain.

Diffusion dominated phase transformations in solids are often modeled by the Cahn-
Hilliard equation coupled with the quasistatic equations of linear elasticity

−divxT (x, t) = b(x, t), (1)

T (x, t) = D
(
ε(∇xu(x, t))− εS(x, t)

)
, (2)

St(x, t) = c∆x

(
ψS(ε(∇xu(x, t)), S(x, t))− ν∆xS(x, t)

)
, (3)

where u(x, t) ∈ R3 is the displacement, T (x, t) is the stress tensor, S(x, t) ∈ R is an order
parameter, ε(∇xu) is the strain tensor and D denotes the elasticity tensor. b denotes the
given volume force, c and ν are positive constants and ψS is the partial derivative of the
free energy

ψ(ε, S) =
1

2

(
D(ε− εS)

)
· (ε− εS) + ψ1(S),

where ψ1 : R → [0,∞) is a double well potential with minima at S = 0 and S = 1. The
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phases are characterized by values of the order parameter close to 0 or 1. This model has
diffusive phase interfaces, since the order parameter is smooth.

On the other hand, martensitic transformations are usually described by a sharp in-
terface model, which consists of an initial-boundary value problem for the functions u,
T and for the unknown phase interface γ̃(t). The different phases are characterized by a
discontinuous order parameter S, which only takes the values S = 0 and S = 1 and which
jumps at the interface. The initial-boundary value problem consists of the equation (1)
expressing conservation of momentum, of the equation (2) stating the linear stress-strain
relations in the two material phases, of suitable boundary and initial conditions and of
the interface conditions

s(x, t) [S(x, t)] = c n(x, t) ·
[
C(∇xu(x, t), S(x, t))

]
n(x, t), (4)

[u(x, t)] = 0, [T (x, t)]n(x, t) = 0, (5)

which must hold for x ∈ γ̃(t). Square brackets denote the jump along the interface,
n(x, t) ∈ R3 is a unit normal vector to the interface oriented such that the jump [S] in
the direction of n is positive, and s(x, t) is the normal speed of the interface measured
positive in the direction of n. Moreover, [C] denotes the jump of the Eshelby tensor

C = ψ(ε, S)I − (∇xu)
TT.

Here I is the identity matrix on R3 and (∇xu)
TT denotes the matrix product. We have

inserted the jump [S] on the left hand side of (4), since in our analysis jumps of [S]
different from 1 must be considered.

Equation (4), a constitutive equation, determines the normal speed s of the phase
interface as a function of the term n · [C(∇xu, S)]n, a configurational force. We assumed
that s is proportional to this configurational force, which is the most simple constitutive
assumption guaranteeing that the second law of thermodynamics holds, cf. [1]. Thus,
in this model the evolution of the phase interface is driven by the configurational forces
generated at the interface by the transformation strain, an assumption appropriate for
martensitic transformations.

2. Diffusive interface model for martensitic transformations

Models with diffusive phase interfaces have several advantages over models with sharp
interfaces. Therefore the question arises, whether it is possible to formulate a diffusive
interface model for martensitic phase transformations. In [1, 2] we were able to derive
such a model by a rigorous mathematical transformation and regularization of the sharp
interface model (1), (2), (4), (5). The final diffusive interface model consists of the
equations (1), (2) coupled to the equation

St = −c
(
ψS(ε, S)− ν∆xS

)
|∇xS| . (6)

Note that this equation differs from the Allen-Cahn equation

St = −c
(
ψS(ε, S)− ν∆xS

)
(7)

only by the gradient term |∇x S|. The regularization is chosen such the second law of
thermodynamics holds. Existence of solutions of initial-boundary value problems in one
space dimension to the transformed model and to the regularized model (1), (2), (6)
was proved in [2, 3]. We believe that this diffusive interface model can also be used to
study existence of solutions of the sharp interface model (1), (2), (4), (5) in three space
dimensions by approximation with smooth solutions of the diffusive interface model. This
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problem is however open.

3. Diffusive interface model for interface motion by interface diffusion

For both equations (6) and (7) the integral
∫

Ω
S(x, t)dx is not conserved in time during

the evolution. By a modification of the considerations leading to (6) the equation

St = c divx

(
|∇xS|∇x

(
ψS − ν∆xS

))
(8)

is obtained, which differs from the Cahn-Hilliard equation (3) only by the gradient term
|∇x S|, and for which the integral

∫
Ω
S(x, t)dx is conserved. In [4] a formal calculation is

sketched which shows that solutions of an initial-boundary value problem to the equations
(1), (2), (8) converge for ν → 0 to solutions of a sharp interface problem with the condition
(4) replaced by the jump condition

s[S] = −c∆̃x(n · [C]n).

Here ∆̃x denotes the surface Laplacian of the interface. Since this sharp interface model
describes interface motion by interface diffusion, we surmise that (1), (2), (8) is a phase
field model for the evolution of interfaces driven by interface diffusion. In [4] it is proved
that the initial-boundary value problem to (1), (2), (8) has solutions in one space dimen-
sion.

References

[1] Hans-Dieter Alber: Evolving microstructure and homogenization. Continuum Mech.
Thermodyn. 12 (2000), 235-287

[2] Hans-Dieter Alber, Zhu Peicheng: Evolution of phase boundaries by configurational
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terms for phase evolution driven by configurational forces. SIAM J. Appl. Math. 66,2
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Non-associated flow arising from non-planar dislocation core structures and 
its effect on macroscopic failure mechanisms 

J. L. Bassani, V. Racherla 
Mechanical Engineering and Applied Mechanics, University of Pennsylvania, PA 19104; 

Email: bassani@seas.upenn.edu

ABSTRACT 

In non-close-packed crystalline lattices, e.g. of bcc metals and intermetallics, the stress-state 
dependence of the Peierls barrier for the motion of a screw dislocation violates Schmid’s law and 
leads to non-associated flow behavior for polycrystalline aggregates (Bassani, 1994; Bassani et 
al., 2001). Plasticity models based upon distinct yield and flow functions are proposed to describe 
such behavior and specialized to case of isotropic response. Studies of sheet necking using both a 
M-K analysis and by finite elements predict that non-associated flow has a significant effect on 
the evolution of inhomogenieties in the sheet. For nearly rate-insensitive response, intermittent 
bursts of strain arise for non-associated flow behavior, particularly for deformations near the 
plane strain state.  

1. Introduction 

Many experimental and theoretical studies performed in last 50 years have convincingly 
established that screw dislocations in non-close-packed crystal lattices control essential aspects of 
plastic deformation due to non-planar dislocation core structures.  This includes bcc metals and 
many intermetallic compounds, and especially their stress-state (including a tension-compression 
asymmetry), temperature and strain-rate dependencies of plastic flow (see, e.g., Vitek, Pope and 
Bassani, 1996). In bcc metals the most prominent characteristic of these dislocations is core 
spreading onto several non-parallel {110} planes containing the <111]> Burgers vector as 
confirmed by atomistic studies (Vitek et al., 2004). When the dislocation core is non-planar, 
Schmid’s law – which states that glide commences when the resolved shear stress on the slip 
system reaches a critical value – is no longer valid.  In general, and in accord with both atomistic 
simulations and experiments, non-glide shear stresses (shear stresses on planes other than the slip 
plane) as well as the Schmid stress determine the Peierls barrier to dislocation motion.  
Consequently, non-glide stresses must be included in the slip-system yield criteria (Qin and 
Bassani, 1992a,b; Bassani, 1994; Vitek, et al., 1994; Bassani et al., 2001; Vitek et al., 2004; 
Groger et al., 2005) .

Qin and Bassani (1992a,b) proposed a model of single crystals incorporating such behaviors 
that has the structure of a non-associated flow theory of plasticity, i.e. one with a distinct yield 
function and flow potential (see also Bassani, 1994).  They demonstrated a significant affect of 
non-glide stresses on shear localization in single crystals under both single and multiple slip.  In 
this paper we address aspects of strain localization in polycrystals that undergo non-associated 
plastic flow.  We consider isotropic behavior and utilize recent results of a Taylor calculation for 
random polycrystals, which demonstrate that the effects of non-glide stresses at the single crystal 
level persists at macroscopic scales.  The predicted yield and flow surfaces for a random bcc 
polycrystal (based upon slip system yield functions derived from atomistic simulations for Finnis-
Sinclair molybdenum) are plotted in Fig. 1 (circles) for plane states of stress (Bassani et al., 

Mathematical methods for bridging length and time scales

13



2001).  It is worth noting that the flow surface is indistinguishable from the yield surface for 
associated flow behavior (Bishop and Hill, 1951).  In the analyses of sheet necking presented in 
this paper, rather simple yield (F) and flow functions (G) that describe isotropic surfaces are 
adopted:

1/ 33/ 21/ 33 / 2
2 33 3

2 3
kl kl mn no oms s s s sF J bJ b  (1) 

2
33
2 kl klG J s s  (2) 

where 2 / 2kl klJ s s  and 3 / 3ij jk kiJ s s s  are the 
second and third invariants of the deviatoric Cauchy 
stress, ijs .  For this simple isotropic theory, the 
parameter b entering the yield function F (1.1) is the 
measure of non-associated flow; b=0 is the classical 
Mises yield function given in (2), which is found to 
very accurately represent the flow surfaces predicted 
by the Taylor calculation.  These surfaces are plotted 
as the continuous curves in Fig. 1, with 0.72b for
the least-square best fit to the yield surface. The 
yield and flow functions (1.1) are used in the sheet 
necking analyses that are the subject of this paper.

In materials undergoing strain hardening and 
associated flow, instabilities are generally a 
consequence of geometric effects arising from finite 
deformations. For infinitesimal deformations 

positive second-order work (SOW), 0ij ijD  (where ij  is an appropriate objective rate of 
Cauchy stress and ijD  is the rate of deformation tensor), is a sufficient condition for uniqueness 
and stability of an initial-boundary-value problem for rate-independent, incrementally linear 
behavior with smooth yield and flow functions (Hill, 1958; Raniecki, 1979).   For non-associated 
flow, Li and Drucker (1994) have noted that the possibility of negative second-order work can 
lead to material instabilities even for infinitesimal deformations.  One way to offset unstable 
behavior is to adopt a rate-dependent, non-associated flow theory, which is outline in Sec. 2. 

In Sec. 3, the effect of non-associated flow on forming limit strains is studied via M-K 
analysis with rate-dependent theory, for a moderately large strain-rate sensitivity. Then full three-
dimensional finite element analysis of sheet necking are carried out, which allows for a relatively 
small strain-rate sensitivity to approximate rate-independent behavior.  For loading histories near 
the plane-strain state, an unexpected phenomenon of intermittent strain bursts is predicted, 
perhaps shedding light on the discontinuous behavior observed by Azrin and Backofen (1970). 
For sufficiently high strain-rate sensitivity the strain bursts are suppressed.   

Figure 1. Yield and flow surfaces predicted 
from a Taylor model for bcc Mo (circles) and 
fits to F , with b=-0.72, and G defined in (1).
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2. Rate-dependent, non-associated flow theory 

For non-associated flow, the plastic part of rate of deformation tensor in a rate-dependent 
theory can be expressed as 

p
ij

ij

GD , (3) 

where the effective plastic strain-rate  is defined as a function of effective stress e ijF

and the effective plastic strain, p
e , i.e. 

p
e e, . (4) 

Generally, the functional form of  is highly non-linear in both e  and p
e , leading to stiff 

differential equations.  Therefore, (3) cannot be integrated effectively using an explicit scheme.  

In order to investigate the effects of strain-rate sensitivity on SOW, we consider implicit 
integration of (3) over a time-interval t .  The average plastic part of rate of deformation tensor 
is approximated as 

p
aveij t t

ij t t

GD . (5) 

From Taylor series expansions, t t  is approximated as 

ep
ee

1
1 ( / )

t t t
t tt

, (6) 

and ( / )ij t tG  is approximated as 

2

ave
kl

ij ij ij klt t t t

G G Gt , (7) 

where ave( )kl  is the average Jaumann rate of Cauchy stress over the interval .  With all terms 
depending on the total stress and effective plastic strain taken to be evaluated at time t, from here 
on the subscript t will be omitted. From (6) and (7) p

aveijD  is 

2
p G G F

ave p
ee ave ave

1
1 /

t
kl klij ij ij kl

ij klt

GD N t N N t
t

, (8) 

where

G F F

e
, , and

/
t

ij ij kl
ij ij ij ij

G F F GN N N
G

.

To estimate SOW for a finite time increment (and for the computations presented in the next two 
sections)  a power-law form for  is adopted: 
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1/
e

o p
cr e( )

m

F
, (9) 

where o  is a material constant and m is the strain-rate sensitivity parameter, therefore 

t t cr
p p

e e cre et t

  and  F
m mF

. (10) 

From (10) the constitutive equation for p
aveijD  is 

2
p G G F

eave p p
e e e ave ave1 / 1 /

t t
kl klij ij ij kl

ij kl

t GD N N N m
t t m

 (11) 

For a convex flow potential the contribution to SOW from the third term in (11) is always 
positive. Therefore in rate-dependent theory, for a finite time increment and for a moderately 
large strain-rate sensitivity, that term tends to increase SOW.  

3. Sheet necking analysis 

A standard M-K analysis (Hutchinson and Neale, 1978) is used to estimate the forming limit 
strains for loadings ranging from uni-axial tension to equi-biaxial tension. As discussed above for 
small values of m, for e.g. m = 0.0002, SOW can be negative at small strains and instabilities can 
occur at strains, that are much smaller than the forming limit strains. Finite element analysis is 
used to study the nature of deformation fields in nearly rate-insensitive, non-associated flow, and 
somewhat surprisingly, jerky flow and strain bursts are seen. 

The M-K analysis is conducted with conducted with rate-dependent theory presented in Sec. 
2. In the analysis, the strain hardening function that enters the rate-dependent constitutive 
equations (10), is assumed to be of the form 

p p
cr e e

N
F k , (12) 

where N is the strain hardening exponent and k is the hardening constant. For the results 
presented below, we consider N = 0.05 and take -1

o595 MPa, =1 s , and  0.02k m .

Isotropic hypo-elasticity is adopted, therefore the constitutive equation for e
ijD  is

e 1 kk
ijij ijD

E E , (13) 

where E is the Young’s Modulus and  is the Poisson’s ratio. We take 200 GPaE and =1 3 .
In addition, the initial imperfection is taken to be 0.01.

Forming limit diagrams are plotted in Fig. 2 and the critical strain as a function of strain state 
in Fig. 3.  The degree of non-associated flow can be parameterized in terms of the strength 
differential (SD), which is defined as 
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1/ 3 1/ 3

T C
1/ 3 1/ 3

T C

2 1 2 / 3 3 1 2 / 3 32

1 2 /3 3 1 2 /3 3

b b
SD

b b
, (14) 

where C  is the initial yield stress in compression and T  is the initial yield stress in tension.  

Next we consider a finite element analysis of the sheet necking problem; the configuration is 
shown schematically in Fig. 4.  Loading near the plane strain state is considered with velocity 
boundary conditions imposed in the ratio 2 1 0.04v v . The analysis is done using implicit 
dynamics scheme in ABAQUS.  For the results presented below, the non-associated flow 
parameter 0.7b , which corresponds to SD=0.2; the hardening exponent 0.1N , the material 
density = 7.8E-9 , and, unless otherwise specified, all other material constants are the same as 
in the M-K analysis.  The geometric parameters are: 0.05  (initial inhomogeneity), 

45 mmL , 9 mmW , and 0.75 mmH .

The evolution of effective plastic strain for several strain-rate sensitivities is shown in Fig. 5 
for both associated and non-associated flow – the overbar denotes an average over the 
corresponding region. For a moderately large strain-rate sensitivity, e.g. 0.01m , the behavior is 
smooth for both associated and non-associated flow.  For non-associated flow and relatively 
small strain-rate sensitivity, e.g. 0.002m  and 0.0002m  (which corresponds to nearly rate 
independent behavior), the deformation is jerky as a result of strain bursts. During periods of 
bursts, when the strain in the band increases rapidly, the overall load also drops precipitously.  
This occurs do to very small or negative values of SOW.  At the same time, the stress state in the 
band tends to rotate and lead to an increase in SOW which, as it becomes positive, tends to 
stabilize the deformation in the band. Several bursts occur before the deformation becomes 
unstable at the forming limit.  In this case of 0.7b  (SD=0.2), the forming limit strain is 
reduced by more than a half due to non-associated flow effects.  

Fig. 3  Strength of non-associated flow 
effects on critical strains at failure 

Fig. 2   Forming limits of sheet necking from 
M-K analysis for various SDs. 
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4. Conclusions

The stress-state dependence of the Peierls barrier for the motion of a screw dislocation in non-
close-packed crystalline lattices violates Schmid’s law, and its effect persists in multiple slip in 
single crystals and leads to non-associated flow behavior for polycrystalline aggregates.  
Plasticity models based upon distinct yield and flow functions are proposed to describe such 
behavior and specialized to case of isotropic response.  For non-associated flow behavior, second-
order work can be negative even for positive hardening moduli, and that can strongly affect the 
deformation behavior.  Studies of sheet necking using both a M-K analysis and by finite elements 
predict that non-associated flow has a significant effect on the evolution of inhomogenieties in 
the sheet. For nearly rate-insensitive response, intermittent bursts of strain arise for non-
associated flow behavior, particularly for deformations near the plane strain state. Moderately 
large strain-rate sensitivities are shown to suppress the instabilities. 
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FIRE: Fast Inertial Relaxation Engine for structural 
optimisations on all scales
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We introduce a simple structural optimization algorithm which is significantly 
faster than standard implementations of the conjugated gradient method and 
which is competitive with more sophisticated quasi-Newton schemes typically 
used in ab initio calculations. It is based on conventional Newtonian dynamics 
with additional velocity modifications and adaptive time steps. The efficiency, 
robustness and versatility of the method is illustrated using a variety of test 
cases, including typical systems encountered in nanoscience, solid state phy-
sics, materials research and biochemistry. The examples range from electronic 
structure calculations of bio molecules and nanotubes, via large scale molecular 
dynamics of complex alloys, cracks and thin films to the continuum mechanics 
of nanocomposits. Despite its simplicity FIRE performs amazingly fast on all sca-
les. It can even be applied to the efficient minimisation of  objective functions in 
other scientific branches like the sum of least squares in statistical modelling or 
fitness functions in evolutionary theories.
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Gamma-convergence methods for multi-scale modeling
Andrea Braides 1, Lev Truskinovsky 2

1Universita‘ di Roma „Tor Vergata“, Dipartimento di Matematica, via della ricerca scientifica 1, 00133 Roma, Italy
2Laboratory of Solid Mechanics, École Polytechnique, Palaiseau, Paris, France

The use of Gamma-convergence in the description of the asymptotic behaviour 
of systems with small parameters (homogenization of composites, phase transi-
tions, discrete-to-continuum theories, thin structures, etc.) is a common practi-
ce in multi-scale variational analysis. Unfortunately, the limit `theories‘ resulting 
from such an approach are simplistic, or inaccurate in some regimes, or simply 
different from those commonly used by practitioners.

We propose a new use of the methods of Gamma-convergence, whose aim is to 
pinpoint singular regimes, and possibly provide alternative limit theories other 
than those given by the Gamma-limit.
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First-passage Monte Carlo
Vasily Bulatov 1, T. Oppelstrup 1, M.H. Kalos 1, B. Sadigh 1, G.H Gilmer 1

1Lawrence Livermore National Laboratory, University of California, L-367, 94551 Livermore, USA

We unveil a principally new Monte Carlo algorithm for simulations of multiple 
diffusing particles of finite dimensions that coallesce or annihilate on collisions. 
The algorithm is derived from the theory of first-passage processes and a time-
dependent Green‘s function formalism. The new method circumvents the need 
for long and tedious diffusion hops by which the particles find each other in 
space. At the same time, the algorithm is exact and its computational efficiency 
is astonishing.  The new algorithm is generally applicable in 1d, 2d, 3d, ... and to a 
wide variety of important physical situtations, including nucleation, growth and 
coarsening of alloy particles and interstitial and vacancy clusters after quench or 
under irradiation. We will present simulation of multi-million particle ensembles 
covering over 10 decades of time of microstructural evolution.
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Dislocations In Cubic Crystals Described By Discrete Models

Ana Carpio1, Luis L. Bonilla2, I. Plans2
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ABSTRACT

Discrete equations of motion for dislocations in cubic crystals including dissipation and
fluctuations are derived. These models have the standard linear anisotropic elasticity as
their continuum limit and their main ingredients are the elastic stiffness constants of the
material and a dimensionless periodic function that restores the translation invariance
of the crystal and influences the dislocation size. Static and moving dislocations are
identified with wave solutions of the model.

1. Introduction

Understanding mechanical, optical and electronic properties of materials requires a
better understanding of the relation between defects and observed macroscopic behavior.
The atomic scale can be resolved by ab initio or molecular dynamics simulations, which
are very costly at the present time. Thus, it is interesting to have systematic models of
defect motion in crystals that can be solved cheaply, are compatible with elasticity and
yield useful information about the defect cores and their mobility.

In a previous paper, we have proposed a discrete model of dislocations and their
motion in cubic crystals with a one atom basis [1]. Let us consider a simple cubic crystal.
Firstly, we discretize space along the primitive vectors defining the unit cell of the crystal
x ≡ (x, y, z) = (l, m, n)a, in which a is the length of the primitive cubic cell, and l, m
and n are integer numbers. Secondly, we replace the gradient of the displacement vector
ũi(x, y, z, t) = a ui(l, m, n; t) (ui(l, m, n; t) is a nondimensional vector) in the strain energy
density by an appropriate periodic function of the discrete gradient, g(D+

j ui): We shall
define the discrete distortion tensor as

w
(j)
i = g(D+

j ui), (1)

D±

1 ui(l, m, n; t) = ± [ui(l ± 1, m, n; t) − ui(l, m, n; t)], (2)

etc., where g(x) is a periodic function of period one satisfying g(x) ∼ x as x → 0. The
strain energy density for the discrete model is obtained by substituting the strain tensor
in the usual strain energy density:

W =
1

2
cijkleijekl, (3)

cijkl = C12 δijδkl +
C11 − C12

2
(δikδjl + δilδjk)
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+H

(

δikδjl + δilδjk

2
− δ1iδ1jδ1kδ1l − δ2iδ2jδ2kδ2l − δ3iδ3jδ3kδ3l

)

, (4)

H = 2C44 + C12 − C11, (5)

eij =
1

2
(w

(j)
i + w

(i)
j ) =

g(D+
j ui) + g(D+

i uj)

2
(6)

(sum over repeated indices is assumed), where cijkl are the elastic constants of the crystal.
Summing over all lattice sites, we obtain the potential energy of the crystal:

V ({ui}) = a3
∑

l,m,n

W (l, m, n; t), (7)

in which we have considered the strain energy deensity to be a function of the point
W (u) = W (l, m, n; t), (l, m, n) = (x, y, z)/a. Next, we find the equations of motion by
the usual methods of classical mechanics. For conservative dynamics:

ρa4 üi(l, m, n; t) = −
1

a

∂V ({uk})

∂ui(l, m, n; t)
, (8)

or, equivalently [1],

ρa2 üi =
∑

j,k,l

D−

j [cijkl g
′(D+

j ui) g(D+
l uk)]. (9)

Here üi ≡ ∂2ui/∂t2 and the displacement vector is dimensionless, so that both sides of Eq.
(9) have units of force per unit area. Let us now restore dimensional units to Equation
(9), so that ũi(x, y, z) = a ui(x/a, y/a, z/a), then let a → 0, use Eq. (9) and that g(x) ∼ x
as x → 0. Then we obtain the usual Cauchy equations of linear elasticity:

ρ
∂2ũi

∂t2
=

∑

j,k,l

∂

∂xj

(

cijkl

∂ũk

∂xl

)

, (10)

provided the components of the distortion tensor are very small. Far from the core of
a defect, the discrete gradient approaches the continuous one. Then, provided the slope
g′(0) is one in the appropriate units, the spatially discrete equations of motion become
those of the anisotropic elasticity. The periodic function g(x) ensures that sliding a plane
of atoms an integer number of times the lattice distance a parallel to a primitive direction
does not change the potential energy of the crystal.

Once the discrete model is specified, different dislocation configurations can be selected
by requiring that their far field should adopt the well-known form of continuous elasticity
[1,2]. Static dislocations move when the applied force surpasses a critical threshold. The
magnitude of this threshold is controlled by the size of the regions where g′ becomes
negative: it decreases as their size increase. This information allows to fit g for particular
materials. A possible choice is:

g(x) =

{

x, |x| < 1
2
− α,

(1−2α)(1−2x)
4α

, 1
2
− α < x < 1

2
+ α,

(11)

which is periodically extended outside the interval (α − 1/2, α + 1/2) for a given α ∈
(0, 1/2). To select α, we calculate numerically the Peierls stress needed to move a given
dislocation as a function of α and fit it to data from experiments or molecular dynamics
calculations.
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In all cases, the procedure to obtain numerically the dislocation from the discrete
model is the same. We first solve the stationary equations of elasticity with appropri-
ate singular source terms to obtain the dimensional displacement vector ũ(x, y, z) =
(ũ1(x, y, z), ũ2(x, y, z), ũ3(x, y, z)) of the static dislocation under zero applied stress. This
displacement vector yields the far field of the corresponding dislocation for the discrete
model, which is the nondimensional displacement vector:

U(l, m, n) =
ũ ((l + δ1)a, (m + δ2)a, (n + δ3)a)

a
. (12)

Here 0 ≤ δi < 1, i = 1, 2, 3, are chosen so that the singularity at x = y = z = 0 does not
coincide with a lattice point. For a sc crystal, it is often convenient to select the center
of a unit cell, δi = 1/2. We use the nondimensional static displacement vector U(l, m, n)
defined by (12) in the boundary and initial conditions for the discrete equations of motion.

Take for example, a pure screw dislocation along the z axis with Burgers vector b =
(0, 0, b) has a displacement vector ũ = (0, 0, ũ3(x, y)) with ũ3(x, y) = b (2π)−1 tan−1(y/x)
[2]. The discrete equation for the z component of the nondimensional displacement
u3(l, m; t) is:

ρa2 ü3 = C44 {D
−

1 [g(D+
1 u3) g′(D+

1 u3)] + D−

2 [g(D+
2 u3) g′(D+

2 u3)]}. (13)

To find the static solution of this equation corresponding to a screw dislocation, we
could minimize an energy functional. However, it is more efficient to solve the following
overdamped equation:

β u̇3 = C44 {D
−

1 [g(D+
1 u3) g′(D+

1 u3)] + D−

2 [g(D+
2 u3) g′(D+

2 u3)]}. (14)

The stationary solutions of Eqs. (13) and (14) are the same, but the solutions of (14) relax
rapidly to the stationary solutions if we choose appropriately the damping coefficient β.
We solve Eq. (14) with initial condition u3(l, m; 0) = U3(l, m) ≡ b (2πa)−1 tan−1[(m +
1/2)/(l + 1/2)] (corresponding to δi = 1/2), and with boundary conditions u3(l, m; t) =
U3(l, m)+F m at the upper and lower boundaries of our lattice. At the lateral boundaries,
we use zero-flux Neumann boundary conditions. Here F is an applied dimensionless stress
(the dimensional stress is C44F ). For small stresses, the solution of Eq. (14) relaxes to a
static screw dislocation u3(l, m) with the desired far field. A static screw dislocation moves
if the applied shear stress surpasses the static Peierls stress, Fcs. A moving dislocation
continues doing so until the applied shear stress falls below a lower threshold Fcd (dynamic
Peierls stress); see [3] for a similar situation for edge dislocations. The numerical solution
shows that moving a dislocation requires that we should have g′(D+

j u3) < 0 (with either
j = 1 or 2) at its core [3], which is harder to achieve as α decreases. A discusion of the
changes in the size of the dislocation core and the Peierls stress due to α can be found
in [1]. Using the same technique, stationary planar edge dislocations for an isotropic sc
material have been constructed and a variety of dipole and loops of edge dislocations have
been numerically found [1].

In this paper, we explain how to treat dissipative dynamics and the effect of fluctua-
tions.

2. Dissipative equations of motion

Overdamped dynamics obtained by replacing the time differential of the displacement
vector instead of the inertial term in the equation of motion (9) is not too realistic.
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Instead, we can add dissipation to the equations of motion by considering a quadratic
dissipative function with cubic symmetry. The resulting equations are:

ρa2 üi =
∑

j

D−

j [(σij + Σij) g′(D+
j ui)]. (15)

Here σij = cijklekl = cijklg(D+
l uk) is the elastic part of the stress tensor, and

Σij = ηijklėkl, (16)

ηijkl =
(

ζ −
2

3
η
)

δijδkl + η (δikδjl + δilδjk)

+ γ

(

δikδjl + δilδjk

2
− δ1iδ1jδ1kδ1l − δ2iδ2jδ2kδ2l − δ3iδ3jδ3kδ3l

)

, (17)

is the viscous part. In the cubic case, the viscosity tensor ηiklm is determined by the three
scalar quantities ζ , η and γ. For isotropic sc crystals, C11 = λ + 2µ, C12 = λ, C44 = µ,
γ = 0. In the isotropic case and taking the continuum limit a → 0, Eqs. (15) to (17) yield
the viscous Navier’s equations for isotropic elasticity [4]:

ρ
∂2ũ

∂t2
= µ ∆ũ + (λ + µ)∇(∇ · ũ) + η ∆

∂ũ

∂t
+
(

ζ +
η

3

)

∇

(

∇ ·
∂ũ

∂t

)

. (18)

3. Discrete model including dissipation and fluctuations

To consider dissipation and fluctuations of the stress tensor and of the heat flux in the
equation for the temperature we follow Onsager’s ideas as used in Fluctuating Hydrody-
namics [5] and obtain the equations of motion:

ρa2 üi =
∑

j

D−

j [(σij + Σij + sij) g′(D+
j ui)], (19)

〈sij〉 = 0,

〈sij(l, m, n; t)sab(l
′, m′, n′; t′)〉 = kBT

ηijab + ηabij

a3
δll′δmm′δnn′ δ(t − t′), (20)

[with σij =
∑

k,l cijklg(D+
l uk) − αij(T − T0) ] for the displacement vector, and

ρac Ṫ + a T
∑

i,j

αijg
′(D+

j ui) D+
j u̇i = −

∑

i

D−

i (Qi + ξi), (21)

〈ξi〉 = 0,

〈ξi(l, m, n; t)ξj(l
′, m′, n′; t′)〉 = kBT 2 κij + κji

a3
δll′δmm′δnn′ δ(t − t′), (22)

for the local temperature T (l, m, n). In Eq. (21), c is the specific heat of the solid, and
the heat flux Qi is related to the discrete gradient of the temperature by the constitutive
relation Qi = −

∑

j κijD
+
j T/a, where κij is the thermal conductivity tensor. kB is the

Boltzmann constant and the temperature is measured in Kelvin. The correlations of
the fluctuating stress tensor and the fluctuating heat flux contain the viscosity tensor
and the thermal conductivity tensor, respectively. In crystals with cubic symmetry, the
elastic constants and the viscosity tensor are given by Eqs. (4) and (17), respectively. The
thermal conductivity and thermal expansion tensors are isotropic, κij = κδij , αij = αδij .
Note that the correlations of sij in (20) and of ξi in (22) are proportional to 1/a3, which
becomes δ(x − x′) in the continuum limit as a → 0.
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4. Extensions to fcc and bcc crystals

Let us explain how to extend our discrete models of dislocations to fcc or bcc crystal
symmetry, assuming that we have one atom per lattice site. For fcc or bcc crystals, the
primitive vectors of the unit cell are not orthogonal. To find a discrete model for these
crystals, we should start by writing the strain energy density in a non-orthogonal vector
basis, a1, a2, a3, instead of the usual orthonormal vector basis e1, e2, e3 determined by
the cube sides. Let xi denote coordinates in the basis ei, and let x′

i denote coordinates in
the basis ai. Notice that the xi have dimensions of length while the x′

i are dimensionless.
The matrix T = (a1, a2, a3) whose columns are the coordinates of the new basis vectors
in terms of the old orthonormal basis can be used to change coordinates as follows:

x′

i = T −1
ij xj , xi = Tijx

′

j. (23)

Similarly, the displacement vectors in both basis are related by

u′

i = T −1
ij ũj , ũi = Tiju

′

j, (24)

and partial derivatives obey

∂

∂x′
i

= Tji

∂

∂xj

,
∂

∂xi

= T −1
ji

∂

∂x′
j

. (25)

Note that u′

i and x′

i are nondimensional while ũi and xi have dimensions of length. By
using these equations, the strain energy density W = (1/2)ciklmeikelm can be written as

W =
1

2
cijlm

∂ũi

∂xj

∂ũl

∂xm

=
1

2
c′rspq

∂u′

r

∂x′
s

∂u′

p

∂x′
q

, (26)

where the new elastic constants are:

c′rspq = cijlmTirT
−1

sj TlpT
−1

qm . (27)

Notice that the elastic constants have the same dimensions in both the orthogonal and the
non-orthogonal basis. To obtain a discrete model, we shall consider that the dimensionless
displacement vector u′

i depends on dimensionless coordinates x′

i that are integer numbers
u′

i = u′

i(l, m, n; t). As in the simple cubic case, we replace the distortion tensor (gradient
of the displacement vector in the non-orthogonal basis) by a periodic function of the

corresponding forward difference, w
(j)
i = g(D+

j u′

i). As in Eq. (11), g is a periodic function
with g′(0) = 1 and period 1. The discretized strain energy density is

W (l, m, n; t) =
1

2
c′rspqg(D+

s u′

r) g(D+
q u′

p). (28)

The elastic constants c′rspq in (27) can be calculated in terms of the Voigt stiffness constants
for a cubic crystal, C11, C44 and C12, which determine the tensor of elastic constants (4).
The elastic energy can be obtained from Eq. (28) for W by means of Eqs. (7). Then the
conservative equations of motion (8) are

ρa3 ∂2u′

i

∂t2
= −T −1

iq T −1
pq

∂V

∂u′
p

,
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which, together with Eqs. (7) and (28), yield

ρ
∂2u′

i

∂t2
= T −1

iq T −1
pq D−

j [g′(D+
j u′

p) c′pjrs g(D+
s u′

r)]. (29)

This equation becomes (9) for orthogonal coordinates, T −1
iq = δiq/a.

To add dissipation and fluctuations to these equations, we need to replace c′pjrsg(D+
s u′

r)
by c′pjrsg(D+

s u′

r)−α′

pj(T − T0) + η′

pjrsg
′(D+

s u′

r) D+
s u̇′

r + s′pj, in which η′

pjrs is related to the
viscosity tensor (17) in the same way as c′pjrs is related to cijlm by (27). The random
stress tensor s′pj has zero mean and correlation given by (20) with the modified viscosity
tensor η′

ijab instead of the viscosity tensor (17). The heat conduction equations are

ρc
∂T

∂t
+ T α′

ijg
′(D+

j u′

i) D+
j

∂u′

i

∂t
= D−

i

(

κ′

ijD
+
j T +

ξ′i
a

)

, (30)

〈ξ′i〉 = 0,

〈ξ′i(l, m, n; t)ξ′j(l
′, m′, n′; t′)〉 = kBT 2 κ′

ij + κ′

ji

a
δll′δmm′δnn′ δ(t − t′), (31)

κ′

pq = T −1
pi T −1

qj κij , α′

pq =
1

2

(

TipT
−1

qj + TjpT
−1

qi

)

αij . (32)

Note that the both the original and the modified tensors αij and κij are symmetric.
Once we have derived the equations of motion, stationary dislocations can be calcu-

lated by first finding the corresponding solution to the equations of anisotropic elasticity
and using it to set up initial and boundary conditions for overdamped equations of motion.
For fcc and bcc crystals, screw and edge dislocations have been constructed in [1].

5. Conclusions

We have proposed discrete models describing defects in crystal structures whose con-
tinuum limit is the standard linear anisotropic elasticity, including fluctuations according
to the fluctuation-dissipation theorem. The main ingredients entering the models are the
elastic stiffness constants of the material and a dimensionless periodic function that re-
stores the translation invariance of the crystal (and together with the elastic constants
determines the dislocation size). For simple cubic crystals, their equations of motion
with conservative or damped dynamics are derived. For fcc and bcc metals, the primitive
vectors along which the crystal is translationally invariant are not orthogonal. Similar
discrete models and equations of motion are found by writing the strain energy density
and the equations of motion in non-orthogonal coordinates. These models to investigate
dislocation motion and interaction in simple geometries.
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ABSTRACT

We consider a model for single-crystal plasticity with a single active slip sys-
tem and linear hardening, with geometrically nonlinear but rigid elasticity. We
determine the relaxation of the incremental variational problem, i.e., the qua-
siconvex envelope of the appropriate energy density. We show that fine-scale
structures are spontaneously formed, in the form of laminates between regions
with slip in opposite directions.

1. Introduction

Plastic deformation of single crystals leads to the spontaneous formation of
microstructures, which largely influence the macroscopic material response.
The work by Ortiz and Repetto [1] started a large effort to understand plastic
microstructure formation in a variational setting. This formulation is admis-
sible if one assumes monotonicity, leading to the so-called deformation theory

of plasticity; or more in general for short times (in the sense of an incremen-
tal problem). Minimizing out the internal variables one obtains a variational
problem of the form

∫

Ω

W (∇u)dx plus external forces, boundary conditions etc. .

The discrete nature of crystalline slip systems makes the energy density W not
convex, which in turn favors the spontaneous formation of microstructures. In
practice, one is often interested in the macroscopic material behavior, on length
scales much larger than that of the microstructure. It is therefore convenient to
adopt a scale separation, solving locally (ideally, at each material point for the
macroscopic computation) a microscopic, scale-invariant problem. The theory
of relaxation shows that the macroscopic material behavior can be studied
directly by replacing W with its quasiconvex envelope, which under suitable
assumptions takes the form [2, 3, 4]

W qc(F ) = inf

{
∫

(0,1)n

W (F + ∇ϕ)dx : ϕ ∈W 1,∞
0 ((0, 1)n; Rn)

}

.

This definition corresponds to optimizing locally (i.e., at any material point)
over all possible microstructures, which are here described by all possible Lips-
chitz continuous functions ϕ which vanish on the boundary. In a geometrically
linear setting, quasiconvexity often reduces to the much simpler concept of
convexity. For example, for a model of crystal plasticity without hardening
the quasiconvex envelope W qc turns out to be convex [5].
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In a finite-deformation context however convexity contrasts with invariance
under rotations. Whereas abstract theory shows that quasiconvexity is the
appropriate concept, in practice this turns out to be much more difficult to
handle. Ortiz and Repetto have shown that energy densities describing a
system with a single slip system in finite deformation lack quasiconvexity,
and therefore lead to spontaneous microstructure formation in the form of
laminates, a fact known as geometric softening [1]. A two-dimensional energy
density with linear hardening and with a polyconvex elastic part was proposed
and shown also to lack quasiconvexity in [6]. There is up to now only one
model problem in finite plasticity for which the quasiconvex envelope W qc

could be computed explicitly, namely, the model with a single slip system and
without hardening considered in [7] and presented in (2) below. Interest has
also been devoted to numerical approximations; in particular, in [8] the two-
dimensional model with a single slip system from [6] was studied numerically.
An approximate numerical relaxation for the same model was then integrated
in a macroscopic finite-element computation in [9]. A finer analysis of the
quasiconvex envelope of the same energy density is now under way, preliminary
results are presented in [10, 11].

We consider here the rigid-elasticity limiting case of the model considered
in [8, 9] for small critical stress. The resulting energy densityresulting W :
R

2×2 → [0,∞] has the form

W (F ) =

{

γ2 if F = Q(Id + γs⊗m) for some Q ∈ SO(2), γ ∈ R

∞ else.
(1)

Here s, m are a pair of orthonormal vectors in R
2, representing the slip direc-

tion and the slip-plane normal, and γ is the slip. For comparison, the problem
considered in [7] is

WCT(F ) =

{

|γ| if F = Q(Id + γs⊗m) for some Q ∈ SO(2), γ ∈ R

∞ else.
(2)

We determine here the full relaxation of (1), by extending the method devel-
oped in [7]. We obtain a characterization of the optimal microstructures which
compares favorably with the previous numerical results from [8, 9]. This result
had been announced in [12] and has been used in [10, 11] as a basis to develop
an efficient numerical relaxation algorithm.

2. Main result

Theorem 1. The quasiconvex, rank-one convex, and polyconvex envelopes of

the energy W defined in (1) are equal and given by

W qc(F ) =

{

|Fm|2 − 1 if detF = 1 and |Fs| ≤ 1 ,

∞ else.
(3)

The optimal energy is realized by a first-order laminate, which is supported

on two matrices which have plastic deformation γ of the same magnitude and

opposite sign.
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We recall that a function W : R
2×2 → R ∪ {∞} is rank-one convex if it is

convex along rank-one lines, i.e., if W (F + ta⊗ n) is convex in t for any fixed
F , a, n. A function W : R

2×2 → R∪{∞} is polyconvex if it can be written as
a convex function of F and detF , i.e., if W (F ) = g(F, detF ) for some convex
g : R

5 → R ∪ {∞}. The rank-one (quasi-, poly-) convex envelope of W is
defined as the highest rank-one (quasi-, poly-) convex function not larger than
W , see [2, 3, 4].

Proof. Let ψ denote the quantity on the right-hand side, i.e.,

ψ(F ) =

{

|Fm|2 − 1 if detF = 1 and |Fs| ≤ 1

∞ else.

We first show that ψ constitutes a lower bound for the polyconvex envelope of
W , and hence for the other ones (see [3, 4, 7]). To prove this it suffices to show
that ψ is polyconvex and that ψ ≤ W . The polyconvexity of ψ follows from
the fact that the function |Fm|2 − 1 is convex, and the conditions detF = 1
and |Fs| ≤ 1 are polyconvex. It remains to show that ψ ≤ W . This is trivial
for all matrices on which W = ∞, hence we only consider the matrices of the
form F = Q(Id + γs⊗m), where W is finite. A straightforward computation
gives

|F 2| − 2 = |Fm|2 − 1 = γ2 .

Therefore on those matrices ψ = W , and globally ψ ≤W . This concludes the
proof of the lower bound.

We now turn to the upper bound. We shall show that ψ constitutes an
upper bound for the rank-one convex envelope of W . To do so, it suffices for
any matrix F to find a pair of matrices F+, F− and weights λ+, λ− ∈ (0, 1)
such that rank(F+ − F−) = 1, λ+ − λ− = 1, and

F = λ+F+ + λ−F− , ψ(F ) ≤ λ+W (F+) + λ−W (F−) .

Consider any matrix F such that detF = 1 and |Fs| ≤ 1. If |Fs| = 1 then
necessarily F = Q(Id + γs ⊗m), for some Q ∈ SO(2) and γ ∈ R, and there
is nothing to prove. Assume therefore |Fs| < 1. Choose two unit vectors a, b
and consider the rank-one perturbation of F given by

Fµ = F + µa⊗ b . (4)

The constraint detFµ = 1 corresponds to a⊥Fb⊥ = 0, and gives a = Fb⊥/|Fb⊥|
(here and below, (x, y)⊥ = (−y, x)). It remains to determine the optimal b
and µ.

The function W (Fµ) is finite only if |Fµs| = 1. Therefore for any given b
the values of µ are necessarily those that satisfy

|Fµs|
2 − 1 = (b · s)2µ2 + 2µ(b · s)(a · Fs) + |Fs|2 − 1 = 0 . (5)

This is a quadratic equation in µ, with the last coefficient negative, and the
first positive (except for b = m). It has two solutions of opposite sign, call them
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µ+ and µ−. We conclude that for any choice of b 6= m, setting a = Fb⊥/|Fb⊥|,
we have a laminate of the form

F = λ+F+ + λ−F− , λ+ = −
µ−

µ+ − µ−

, λ− =
µ+

µ+ − µ−

,

where F+ = Fµ+
and F− = Fµ

−

. The corresponding energy is given by

E = λ+W (F+) + λ−W (F−) = λ+(|F+|
2 − 2) + λ−(|F−|

2 − 2)

Computing explicitly |Fµ|
2 − 2 = µ2 + 2µa ·Fb+ |F |2 − 2 and substituting we

obtain

E = |F |2 − 2 + λ+µ
2
+ + λ−µ

2
−

= |F |2 − 2 − µ+µ−

= |F |2 − 2 +
1 − |Fs|2

(b · s)2
(6)

where we used the explicit expression for λ± and replaced the product of µ+µ−

with the value apparent from (5).
The optimal choice for b is determined as the one that minimizes (6), and

is b = s. This gives

E = |F |2 − 2 + (1 − |Fs|2) = |Fm|2 − 1

and therefore shows that the rank-one convex envelope of W is less than or
equal to ψ (precisely, ψ is the first-lamination convex envelope of W ). This
concludes the proof for the rank-one convex and polyconvex envelopes. For the
quasiconvex one an additional construction is needed in the boundary layer.
This can be done using the convex integration results by Müller and Šverák
[13] as discussed in [7], we omit the details.

Finally, we show that the matrices F± on which the laminate is supported
have the same plastic slip γ (in absolute value). This corresponds to the
condition W (F+) = W (F−), or equivalently |F+m| = |F−m|. Since m · s = 0,
the latter is a trivial consequence of (4) and the fact that b = s.

We finally remark that, much as in [7], in three dimensions the func-
tion W defined in (1) turns out to be quasiconvex. This is however to be
seen as a degeneracy originating from the rigid-elasticity assumption, and not
as a physically meaningful effect. The rank-one convex and polyconvex en-
velopes, indeed, are different from W , and are given by |Fm|2 − 1 on the set
{F ∈ R

3×3 : detF = |F (s ∧m)| = | cof F (s ∧m)| = 1, |Fs| ≤ 1}, and ∞ else-
where. A proof of these facts can be obtained from the one of [7, Th. 2] with
minor changes.

3. Discussion

For a comparison, we recall that the quasiconvex envelope of WCT derived in
[7] is

W qc
CT(F ) =

{

λ2(F ) − λ1(F ) if detF = 1 and |Fs| ≤ 1

∞ else,
(7)
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where λi denote the ordered singular values of F , i.e., the eigenvalues of
(F TF )1/2. The optimal microstructure was also in that case a simple lami-
nate; one of the two matrices F± was a rotation.

In comparing with the present result two qualitative differences appear.
Firstly, the relaxation of WCT turned out to be isotropic, on the given subset
of strain space, the present one is not. Secondly, the relaxation ofWCT involved
a microstructure in which part of the sample had a purely elastic deformation;
in the situation considered here instead the entire sample deforms plastically,
the microstructure corresponds to oscillations in the sign of γ. This is in
agreement with numerical results [8, 9, 10, 11].

Given these two results, it is interesting to guess the behavior of a mixed
model, i.e., of a problem of the type

Wmixed(F ) =

{

τγ + γ2 if F = Q(Id + γs⊗m) for Q ∈ SO(2), γ ∈ R

∞ else,

for a small parameter τ . For small strains, i.e., for matrices whose distance
from a rotation is small compared to τ , one expects that the optimal laminate
will be analogous to the one obtained for WCT, i.e., will contain one phase
which is a rotation. For strains much larger than τ (but which still do not
reach the hard constraint) we instead expect W to be a good model, and the
optimal microstructure to involve two regions, with slip of opposite sign. A
transition between exactly these two regimes is observed in faulting and kink
banding of geological rocks and on experiments on compressed paper sheets [14,
Fig. 1b], and it is tempting to imagine that the two phenomena are related. It
is however at present not clear to which extent an energy like Wmixed(F ) gives
a good model for kink banding in rocks.
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for the numerical simulation of complex fluids
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The Lattice Boltzmann Method is relatively recent and it allows the numerical 
simulation of complex physical phenomena in particular in the field of fluid me-
chanics. The modelling of systems or processes is carried out on a mesoscopic 
scale, in term of fictitious particles progressing in a discrete space  time domain. 
This method is viewed as an approach using simple microscopic models to si-
mulate macroscopic behaviour of fluid flows for example. The history of this me-
thod goes back to the theory of Lattice Gas Cellular Automata in the 1980ies.

The procedure leading the continuous equation to the formulation of the lattice 
Boltzmann method is exposed, and the derivation of the Navier-Stokes equati-
on from the lattice Boltzmann equation is established. Today, in many different 
fields, modelling and numerical simulation in two and three dimensions are car-
ried out with this method.

In the field of polymer injection moulding process, the numerical simulation 
of the filling phase gives realistic results with respect to industrial applications, 
taking in consideration two phases (Air and molten polymer).

As an illustration in fluid mechanics, we present numerical results for Newtonian 
and non Newtonian fluid flows for two simple geometries and for the filling of 
a plastic part.
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ABSTRACT 
 
 
 

We study the capillary impregnation of a nano-scale pore by Multibody Dissipative Particle 
Dynamics (MDPD) [4]. As an essential prerequisite for studying capillary phenomena, an 
adhesive wall model is introduced assuming a thermally roughened interface. It provides a 
constant and homogeneous temperature profile and avoids density oscillations. We 
demonstrate that the impregnation dynamics follows the classical Lucas-Washburn equation 
augmented by the effects of inertia and the dynamic contact angle. We show that a 
constitutive model for describing dynamic contact angles, e.g. the model of Cox [5], is suited 
for describing stationary conditions, while it is not adequate for describing transient dynamic 
processes as studied here. 
 

 

1. Introduction to Multibody  Dissipative Particle Dynamics 
 

 

Multibody Dissipative Particle Dynamics (MDPD) is a particle based simulation method 
similar to Molecular Dynamics (MD), where particles move according to Newtons equation 
of motion with forces iF , 
 

( )C D R
i ij ij ij

j

= + +∑F F F F ,                                                        (1) 

 
resulting from the pair wise interaction, with neighboring particles in a cutoff range rc, 
comprising a conservative, a random and a dissipative part [1]. If ir denotes the particle 
position, the conservative force  is acting in the central line between the particles i  and j , 
where  ij i j= −r r r , ij ijr = r   and  /ij ij ijr=e r .  In this work, the approach of Warren [4] is 
pursued, who adds a density dependent part directly to the force, 
 
   ( ) ( ) ( )C C C

i jij ij ij ij d ij ijA r B rω ρ ρ ω= + ⋅ +F e e ,        (2) 
 
where ( )C

i d iji j
rρ ω

≠
=∑  is the instantaneously weighted average local density and C

dω  is a 
weight function on a smaller cutoff range rd. The weight function ( ) ( )C

C rrr /1−=ω  vanishes 
for an inter-particle distance rij larger than a cutoff radius Cr . A temperature conserving 
thermostat is achieved by adjusting the strength of the random force ( )R R

ij ij ij ijrσω ξ=F e  and 
the viscous damping force ( )( )D D

ij ij ij ij ijrγω= − ⋅F v e e  via the fluctuation-dissipation theorem: 
TkBγσ 22 = , with the Boltzmann constant Bk and the temperature  T  of the system. Here σ  
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is the amplitude of the Gaussian shaped random variable ijξ  and γ  represents the strength of 
the viscous dissipation. With the conservative force given by equation (2), the equation of 
state (EOS) has a Van-der-Waals loop, which is necessary for generating free capillary 
surfaces.  
 
 
 2. Wall Model 
 
 
An essential prerequisite for studying capillary phenomena is a realistic representation of the 
system boundaries, e.g. a no-slip condition at the walls. Possible strategies in MDPD to 
generate walls are either to use external potentials as walls or to generate walls by using 
particles. In this study we use the latter approach. In order to maintain the walls, the particles 
may either be: (i) fixed to their initial position or  (ii) pinned by harmonic forces to their 
initial position, which results in a thermally roughened surface. The second approach clearly 
reduces high density oscillations, see figure 1, that should only be present if truly atomistic 
scales are to be modeled.  
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Figure 1: Density distribution in a slit of a 
width of 20rc for different wall models: (i) 
solid line represents a wall with frozen 
particles, (ii) solid line with circles represents 
a thermally roughened wall. 

Figure 2: Flow in a slit of width of 20rc 
obtained by MDPD simulation (dashed line) 
compared to a fit of a Poiseuille flow (stars).  

 
In addition to a homogeneous temperature and density profile across the interface, the wall 
concept introduced here leads to a no-slip boundary condition with a perfect Poiseuille profile 
in the slit, see figure 2.  
 
 
3. Impregnation Characteristics 
 
 
Inertia and the dynamic contact angle play a significant role on the time scale of the 
simulation considered here. The dynamic behavior during capillary filling is studied and 
compared to the analytical solution for the problem balancing the momentum change 

/fluiddp dt  of the fluid, the pressure drop due to viscous losses 212 / /b z dz dtη ⋅ ⋅  and the 
driving capillary pressure 2 / cos( )dbσ θ⋅ : 
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2

2 12cos( )fluid
d

dp dzz
dt b b dt

σ ηθ= −               (3) 
 

Here z denotes the filling heights, η the viscosity of the fluid, b the height of the slit and σ is 
the surface tension of the fluid.  Equation (3) is an extension of the Lucas-Washburn 
equation , 2

00 2 / cos( ) 12 / /b b z dz dtσ θ η= ⋅ − ⋅ ⋅ , where also inertia and the dynamic contact 
angle are accounted for. 
 
In order to solve the problem by numerical integration, the value of the dynamic contact angle 
θd has to be known. The dynamic contact angle θd may be provided by different strategies, 
either: (i) a model or (ii) by extracting the dynamic contact angle during the MDPD-
simulation of the filling process itself.  
 
Case (i) means that there is a closed analytical description for the problem since θd is known 
and can directly be inserted into equation (3) to solve the problem. If this doesn’t lead to a 
satisfactory result then a MDPD-simulation is needed in order to check the validity of 
equation (3).  
 
At first, the dynamic contact angle behavior reproduced by the MDPD-simulation is extracted 
from a separate plug-flow MDPD-simulation, see figure 3, where the capillary number, 

/Ca vη σ= ⋅ , is fixed for a time scale until an equilibrium of the dynamic contact angle θd is 
reached, representing a stationary situation. The result, see figure 3, shows that the behavior 
for a stationary condition can be described by the model of Cox [5] for dynamic contact 
angles.  
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Figure 3: Dynamic contact angle behavior 
over the capillary number extracted from a 
series of stationary MDPD-simulations 
compared to the model of Cox  [5]. 

Figure 4: Filling dynamics obtained by 
MDPD-simulation compared to numerical 
integration of equation (3) for: (i) the model 
of Cox and (ii) the dynamic contact angle 
extracted from the MDPD-simulation. 

 
The model of Cox is then inserted into equation (3) and compared to the dynamical capillary 
filling process resulting from the MDPD-simulation (see figure 4 triangles). From the 
pronounced deviation between equation (3) using the model of Cox compared to the MDPD-
simulation two possible conclusions may be inferred: (i) either the extension of the Lucas-
Washburn equation, i.e. equation (3), is not applicable or (ii) that the dynamic contact angle 
predicted by the model of Cox does not correspond to the dynamical situation during the 
filling process. Therefore, the dynamic contact angle during the capillary impregnation is also 
extracted from the MDPD-simulation online and is inserted into equation (3) in order to check 
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equation (3) for consistency. The resulting curve perfectly agrees with the result obtained by 
the MDPD-simulation indicating that equation (3) is correct. 
 
 
Conclusion & Outlook 
 
 
This example shows that present constitutive laws for dynamic contact angles are not 
adequate for describing transient dynamic behavior. One reason for this is that in contrast to 
assumptions in existing theories the dynamic contact angle depends strongly on the flow field 
as a whole, which is strongly affected by the specific situation, e.g. the geometry or inertia, 
which has lately been shown also experimentally [6].  
 
The result of our study indicates that transient dynamic capillary processes may not be 
described within present theories for dynamic contact angles but instead require a simulation 
of the system with MD or much more efficiently with MDPD.   
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Mi2cell: A generic tool for linking micro features into 
finite element solvers

Sumitesh Das
TATA STEEL, Automation Division (G-84), TATA STEEL, 831001 Jamshedpur, India

Integrating microstructural details and their relationships across time and length 
scales into structural, mechanical and electrical analyses is of paramount im-
portance in designing materials and processes for superior performance and 
durability. It is necessary to design and develop tools that enable the transfer of 
relevant information from micro features at various length scales to the macro 
entity and vice-versa.

The paper reports the design and development of a micro-feature to cell con-
verter Mi2Cell) software in an attempt to transfer the micro-macro information. 
The software uploads the micro information either in 2D digital micro data or 
EBSD data and translates these into appropriately scaled cellular automata (CA) 
cells. Each cell represents a material point that is representative of an underlying 
micro-feature e.g. a grain boundary, a dislocation rich or deplete region. Mi2Cell 
reads in the input deck of an overlying finite element and links the micro feature 
with the integration point of the element. The output from Mi2Cell is compa-
tible with the user-defined material subroutine USDFLD of ABAQUS Implicit FE 
solver.

Based on the information grained from the micro-feature, Mi2Cell generates 
“self-similar” micro-features having consistency at the macro level but are locally 
distinct. At present, Mi2Cell generates the micro-features for single-phase grain 
based microstructures. Work is presently underway to extend Mi2Cell capability 
to generate “self-similar” dual and multi phase micro-features for analyses.
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Adaptive Resolution Molecular Dynamics Simulation: 
Changing the

Degrees of Freedom on the Fly
Luigi Delle Site

Max-Planck Institute for Polymer Research, Mainz, Germany

We present a new adaptive resolution technique for particle-based efcient mul-
tiscale molecular dynamics (MD) simulations. The presented approach is tailor-
made for molecular systems where atomistic resolution is required only in spati-
ally localized domains whereas a lower mesoscopic level of detail is sufcient for 
the rest of the system.

Our method allows an on-the-fy interchange between a given molecules ato-
mic and coarse-grained level of description, enabling to reach large length and 
time scales while spatially retaining atomistic details of the system. The new 
approach is tested on a model system of a liquid of tetrahedral molecules. The 
simulation box is divided into two regions: one containing only atomistically 
resolved tetrahedral molecules, the other containing only one particle coarse-
grained spherical molecules. The molecules can freely move between the two 
regions while changing their level of resolution accordingly. Both, the coarse 
grained as well as the atomistically resolved system have the same statistical 
properties at the same physical conditions.
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Valence-dependent analytic bond-order potentials for 
transition metals

Ralf Drautz
University of Oxford, Department of Materials, Parks Road, OX1 3PH, Oxford, United Kingdom

We present a new analytic atom-based interatomic bond-order potential (BOP) 
for transition metals that depends explicitly on the valence [1]. The potential is 
derived from the tight-binding electronic structure and may be regarded as a 
systematic extension of the second-moment Finnis-Sinclair potential to include 
higher moments. This analytic BOP predicts not only the structural trend from 
hcp to bcc to hcp to fcc that is observed across the non-magnetic 4d and 5d 
transition metal series, but also the different magnetic behaviour of the bcc, 
fcc and hcp phases of the 3d transition metal iron. The potential describes alloy 
formation correctly, so that is should be suitable for the simulation of complex 
phases in intermetallic compounds.
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The Evolution of Excess Dislocation Density in Torsion
Claude FRESSENGEAS 1, V. Taupin 1, S. Varadhan 2, A. J. Beaudoin 2

1Laboratoire de Physique et Mecanique des Materiaux, University P. Verlaine - Metz / CNRS, Ile du Saulcy, 57045 
Metz, France

2Department of Mechanical and Industrial Engineering, University of Illinois, 61801 Champaign, Urbana, United 
States of America

The evolution of excess dislocation density in torsion is addressed by using a 
recent theory for the coupled dynamics of statistically distributed dislocations 
and excess dislocations [1, 2]. Excess dislocations are defined as a continuous 
manifestation of lattice incompatibility. Statistically distributed dislocations lead 
to compatible deformation and make no contribution to internal stresses. Both 
dislocation species contribute to plastic flow. Their dynamics are coupled in the 
sense that gradients in the compatible plastic distortion field generate excess 
dislocations. Further coupling occurs at large strains, when excess dislocations 
contribute to forest hardening.

Plastic distortion gradients are inherent to torsion testing. Our numerical simu-
lations suggest that under a positive torque, positive excess screw dislocations 
nucleate in planes normal to the torsion axis, while negative excess screws par-
allel to the axis form in planes containing the axis. By adding their contribution 
to plastic flow to that of statistically distributed dislocations, excess dislocations 
induce shear stresses lower than predicted from conventional plasticity. Howe-
ver, for sufficiently small wire radii, transport of the excess dislocations toward 
the center becomes effective and pile-ups of screws form about the axis. The 
torque (scaled with respect to the cubed radius) needed for a certain rotation 
then increases, albeit remaining less than predictions from conventional plasti-
city. Size effects are therefore occurring. The simulated dislocation structures, 
the stress fields and their dynamics are illustrated in ice crystals oriented for 
basal slip and in copper, as motivated by the experimental studies given in [3] 
and [4], respectively.

[1] A. Acharya, A. Roy, J. Mech. Phys. Solids, in press

[2] S. Varadhan, A.J. Beaudoin, C. Fressengeas, Proceedings of  Science (2006), 
submitted.

[3] M. Montagnat, J. Weiss, P. Duval, H. Brunjail, P. Bastié, J. Gil Sevillano, Phil. 
Mag., in press.

[4] N.A. Fleck, G.N. Muller, M.F. Ashby, J.W. Hutchinson, Acta Metall. Mater. (1994), 
42, 475.
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Variational models for plasticity by homogenization of 
discrete dislocations

Adriana Garroni 1, Giovanni Leoni 2

1Universita‘ di Roma „La Sapienza“, Dipartimento di Matematica, piazzale Aldo Moro 2, 00185 Roma, Italy
2Department of Mathematical Sciences, Carnegie Melon University, Pittsburgh, Pennsylvania, 15213, USA

We consider a 2D model for edge dislocations, where points represent disloca-
tions and  the crystal behaves elastically far from the core. We study, in a dilute 
regime, the limit as the number of points (dislocations) tends to infinity and we 
obtain a limit problem given by the elastic energy and a term depending on the 
Curl of the plastic deformation (the dislocations density).
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A Combined Atomistic/Continuum Method For Thermoelastic Problems 
 

Simon P.A. Gill and Kenny Jolley 
 
 

Department of Engineering, University of Leicester, 
University Road, Leicester, UK, LE1 7RH 

spg3@le.ac.uk 
 

ABSTRACT 
 
 

A method for embedding a non-equilibrium atomistic simulation within a continuum model is 
proposed. This paper focuses on conservation of the flow of thermal energy between the two 
descriptions for the case of a one-dimensional chain. Firstly, the choice of an appropriate 
atomistic model is addressed. For a Lennard-Jones chain, it is found that adverse phonon 
scattering at the interface makes the temperature in the chain difficult to control effectively. 
Also, it is known that the conductivity of such a chain is divergent. The  potential is 
consequently adopted as an ideal model system to avoid these problems. Atomistic heat fluxes 
are calculated and conserved to reproduce steady state heat flow along a mixed 
atomistic/continuum chain.  

4φ

 
 
1. Introduction 
 
The boundary conditions for molecular dynamics (MD) simulations in the condensed phase 
are a compromise between correct representation of the far field and minimization of the 
system size due to computational constraints. In recent years, concurrent multiscale methods 
have been developed for crystalline solids in which the complex response of the far field is 
represented by a coarse-grained continuum region constructed from finite elements (see [1,2] 
for reviews). The requirements of the continuum far field depend on the nature of the 
simulation, generally either sampling or dynamics.   If the purpose of simulation is sampling 
of near equilibrium or steady state quantities, then typically only slowly-changing 
thermodynamical or statistical quantities are of interest and inertial effects are small.  Rapid 
changes occur in truly dynamic situations such as fast fracture.   
 
Dynamical simulations are complicated by the reflection of high frequency phonons from the 
interface between the atomistic and continuum regions. This leads to energy trapping and 
localized heating [2]. Correct transmission of phonons across the interface [1-4] is only 
necessary if the far boundaries can be seen during the simulation period (e.g. MEMS) or there 
are two atomistic regions which need to interact dynamically via the continuum medium (e.g. 
two cracks). We assume here that absorption of phonons at the interface is a sufficient 
requirement. This type of approach [5,6] has allowed the elastic boundary conditions to be 
specified at a position remote from the atomistic region. However, the thermal boundary 
condition (constant temperature) is at the edge of the atomistic region. This could be highly 
restrictive on the evolution of thermal energy within the atomistic region. Liu [7] has recently 
demonstrated that MD simulations of nanoindentation are very sensitive to restricted 
thermostatic control. Keeping the boundary temperature constant also restricts simulations to 
be near to thermal equilibrium, whereas non-equilibrium conditions (e.g. temperature 
gradients) may be of interest. 
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It is the purpose of this work to investigate the possibility of using combined 
atomistic/continuum algorithms to allow MD simulations to be conducted with remote 
thermal and elastic boundary conditions. This paper focuses on the thermal model, which has 
not to date been the focus of much attention [1]. Two issues need to be addressed. Ensuring 
compatibility between the atomistic and continuum descriptions is discussed in section 2. 
Smooth transfer of information across the interface between the two models is the subject of 
section 3.  
 
 
2. Non-Equilibrium Molecular Dynamics 
  
Before proceeding further, it is necessary to determine the continuum thermal properties of 
our atomistic model: namely the thermal conductivity k. The conductivity can be determined 
from equilibrium simulations using linear response theories such as the Green-Kubo formula 
[8]. An alternative method is to use Non-Equilibrium Molecular Dynamics (NEMD). In this 
case, a steady state temperature gradient, T∇ , is established by thermostatting two different 
regions of the simulation at different temperatures. The heat flux, j, in the unthermostatted 
region between the thermostat is then calculated and the conductivity determined from 
Fourier’s law for macroscopic heat flow 
 

Tkj ∇−= .      (1) 
 
The NEMD approach is directly relevant to the class of problems which we intend to solve, 
and therefore it is adopted here. The situation described above is not as straightforward as it 
may appear. Details of the atomistic simulation are given below, along with a discussion of 
potential difficulties. 
 
 

2.1 The atomistic model 
 

In this paper we restrict our interest to heat conduction in insulators via phonon interaction 
(i.e. conduction by electrons is neglected). Also, for the benefit of model development, we 
consider a one-dimensional chain of atoms. The temporal evolution of the system is then 
described by a simple classical Hamiltonian 
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where ,  and  are the momentum, mass and displacement (from its equilibrium 
position) of the ith atom and N is the number of atoms in the chain. The potential function 

 is due to interaction between atoms. The potential  is known as an on-site 
potential. Its relevance will be seen in sub-section 2.3. It represents interaction between the 
atomic chain and an external substrate. The dynamics of the system described by (2) are  
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2.2 Thermostats and phonon scattering 
 
To establish a temperature gradient in our NEMD simulation, it is necessary to inject kinetic 
energy into one end of the chain and to remove it from the other end. This is achieved by the 
use of thermostatting algorithms. Two well-known examples are the Langevin thermostat and 
the Nosé-Hoover thermostat.  
 
The Langevin thermostat is a stochastic thermostat which adds a random force to the particle 
motion along with an appropriate damping term such that 
 

 Lii
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ii Rfxm
x
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−= &&& γ)(     (4) 

 
where γ  is a damping coefficient, 10 ≤≤ R  is a uniformly distributed random variable and 

t
Tm

f ci
L ∆
=

γ6
 is the magnitude of the stochastic force for a target temperature  and a time 

step . The advantage of this thermostat is that it is easy to implement and the target 
temperature can be specified for each atom, i.e. a non-uniform temperature distribution can be 
specified. One variant, stadium damping, has been shown to be an effective means of phonon 
absorption [5]. 

cT

t∆

 
The Nosé-Hoover thermostat is a deterministic thermostat which maintains the average 
temperature of an atomic ensemble at a target value. This is widely used for constant 
temperature dynamical simulations, but is less effective when the ensemble has a variation in 
thermal conditions over its boundaries such as in NEMD. This is because the average 
temperature is maintained, but any temperature distribution which satisfies this average is 
possible. One solution is to apply the thermostat only to atomic ensembles within which no 
net heat flow is expected to occur [9]. In one-dimension, this corresponds to thermostatting a 
single atom. Although this does not strictly conform to the requirements for sampling the 
canonical ensemble, it is widely used in low-dimensional NEMD. The motion of a 
thermostatted particle is described by  
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where  is Boltzmann’s constant and Q is a thermal mass.  Bk
 
We assume for the rest of this paper that Boltzmann’s constant and the atomic spacing, mass 
and spring stiffness (in the harmonic limit) are unity. The two thermostats above are applied 

to a 100 atom Lennard-Jones chain such that 0)( =xU  and ⎟
⎠
⎞

⎜
⎝
⎛ −= 612

21
72
1)(

rr
rV . Only 

nearest neighbour interactions are used. The damping coefficient, ωγ 2
1= , is half the 

(harmonic) oscillation frequency, 2=ω . The time step is 1/50th of the periodic time, 
ωπτ 2= . The extremities of the chain are fixed ( 010 == +Nxx &&&& ) and the thermostats applied 

to the end atoms (i=1 and i=N). The non-dimensionalised target temperatures are =0.3 and 
=0.2. Simulations are allowed to reach a steady state over a time of  and then the 
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average temperature 2
2

1
ii xmT &=  determined over a similar subsequent period, where .  

denotes the time ensemble average. The results are shown in Fig. 1.  It is clear that the results 
are not good. There is a large temperature discontinuity at the ends, such that the temperature 
gradient observed in the simulation is not the applied temperature gradient. In the case of the 
Langevin thermostats, practically no temperature gradient develops. This effect has been 
widely observed and is mainly explained by phonon scattering at the interface [8]. It is 
difficult to avoid and exists in 1D, 2D and 3D. The net energy flux between particles (see 
Eqn. (9) later on) is due to long-term correlations between their motions. Any thermostat will 
artificially alter the particle motion and corrupt this correlation. The Nosé-Hoover thermostat 
is better than the Langevin thermostat as deterministic methods naturally exhibit longer 
correlation times than stochastic methods. Free ends, rather than fixed ones, can reduce this 
scattering effect [8]. 
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Figure 1: Temperature profile for a 100 atom Lennard-Jones chain with fixed ends 
using (a) stochastic Langevin thermostats and (b) deterministic Nosé-Hoover 
thermostats, applied to each end. The discontinuity in the temperature profile at each 
end is due to phonon scattering.  
  
 
2.3 Divergence of the thermal conductivity 

 
It is expected that an atomic system will obey Fourier’s law (1) such that the thermal 
conductivity, k, will be constant in the macroscopic limit, i.e. although there are expected to 
be system size effects [10], k will converge as the system size increases. This is not always 
found to be the case in low-dimensional systems. A lengthy review of this subject is provided 
by Lepri et al. [8]. To briefly summarise, it is predicted (and normally found) that for 
momentum conserving potentials ( 0)( =xU ), for a system of characteristic dimensional size 
N,  

 
    52Nk ∝   in 1D 
      in 2D         (6)
      in 3D. 
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Hence, a 1D chain will possess a divergent thermal conductivity for a momentum conserving 
potential. This is not desirable. Working with a 1D chain is desirable from a model 
development point of view, but it introduces problems which will not be an issue in 3D. 
Hence we choose to utilize an on-site potential, , to break momentum conservation. The 
simplest is the  potential model. The form used here is a simple harmonic interaction 
potential with an anharmonic on-site potential such that  

)(xU
4φ
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where we take 2=β . The use of a harmonic interaction potential has the advantage that the 
thermal expansion coefficient is zero. Therefore there is no coupling between the thermal 
field and the quasi-static elastic field, which simplifies the problem. Normally, a harmonic 
interaction potential cannot be used for thermal simulations as the conductivity is infinite [8]. 
This is because thermal energy transfer occurs via phonon interaction. However, in this case, 
the on-site potential generates the anharmonic response required for phonon interaction. 
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Figure 2: Temperature profile for a 100 atom  chain with fixed ends using two 
Nosé-Hoover thermostats. This on-site potential model reduces phonon scattering and 
has a convergent thermal conductivity. The dashed straight line is for reference. 
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The temperature profile for the  model for the Nosé-Hoover thermostats is shown in Fig. 2, 
under identical conditions to those specified for Fig.1. It is noted that the on-site potential has 
significantly reduced the temperature discontinuity at the ends due to scattering. A similarly 
good result is also obtained for the Langevin thermostat. The profile is slightly non-linear, 
presumably because the conductivity changes with temperature. This effect will be neglected 
for the purposes of simplicity here. The thermal conductivity can be calculated from this 
simulation given a knowledge of the heat flux. This can be calculated in two ways. Firstly, the 
energy injected into the hot end (which should be equal to the energy removed from the cold 
end on average) is the rate of work done by the Nosé-Hoover thermostat 

4φ
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Secondly, the heat flux communicated between atoms i and i+1 is given by 
 

iiii fxxj )( 12
1 && +−= +        (9) 

 
where  is the force between atoms i and i+1 due to the interaction potential. It can be 
confirmed that this is constant (averaged over time) at all points in the lattice and that (8) and 
(9) give equivalent values. Equating the flux with Eqn. (1) gives the thermal conductivity. 
This is shown as a function of chain length in Fig. 3 for a fixed temperature difference of 0.1 
as in Fig. 2. This confirms that convergence is achieved. 
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Figure 3: The thermal conductivity of the  chain as a function of chain length N. As 
the chain length increases the conductivity converges to a finite value. 
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3. A Combined Atomistic/Continuum Model 
 
Having proposed a suitable atomistic model and derived a compatible macroscopic model in 
section 2, it is the purpose of this section to embed the NEMD simulation within a continuum 
one. A continuum chain consisting of M nodes is added to each end of the atomistic chain. 
The nodes are unit distance apart and fixed in space. The temperature variable at each node, 

, represents the time-averaged kinetic energy of an equivalent atom at that location, where 
 in the first chain and 

iT
0,...,1+−= Mi MNNi ++= ,...,1  in the second. There is no coarse-

graining in the continuum chain here, although this process is trivial. The evolution of the 
atomistic region has been described in section 2. The only difference is that the target 
temperatures of the two ends of the atomistic chain,  and , are now variables to be 
determined. Note that all these temperatures are macroscopic variables, temperatures derived 
from atomistic kinetic averages are denoted by 

1T NT

iT , where Ni ,...,1= .  The evolution of the 
system must satisfy flux conservation 
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where  is the heat flux from atom i to atom i+1. The above holds at all points in the 
simulation where, from (1), (8) and (9), one can write 
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We use the actual heat flux into the atomistic simulation, defined by (8), rather than the 
macroscopic heat flux (1), as the two are only identical over long time scales and the target 
temperature is required to respond rapidly. However, the target temperatures,  and , 
evolve rapidly under the above scheme due to inevitably large rapid fluctuations in the 
atomistic fluxes (9). As the target temperatures themselves are used to control the rapidly 
fluctuating thermostat variables (5), this renders the system unstable. One simple correction to 
this is to use time averaged atomistic fluxes 

1T NT

ij  rather than instantaneous ones. Note that 

there are two definitions of the temperature for the thermostatted atoms, e.g.  and 1T 1T , a 
comparision of which could also be used to enhance the stability of the algorithm if required. 
In the case of steady state heat flow considered here, the flux averaging is sufficient. 
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 Figure 4: The temperature profile along a combined atomistic/continuum chain of 200 
atoms/nodes. The first and last 50 nodes are in the continuum region. The central 100 
atoms are in the atomistic region. 

 
The temperatures at the ends of the continuum chain are fixed to be  and 

. We take M=50 and N=100. The atomistic region is initially thermalised using an 
appropriate random Gaussian distribution of velocities. The resulting temperature distribution 
is shown in Fig. 4. The two target thermostat temperatures oscillate around the expected 
average values for a linear profile. The average macroscopic conductivity for a 100 atom 
chain, k=5.78, was used. However, the attractiveness of this algorithm is that it is relatively 
insensitive to this value. This is because the most influential fluxes, which regulate the flow 

3.01 =+−MT
2.0=+MNT
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of heat in to and out of the atomistic region, are derived from the atomistic region themselves 
and do not rely on the value of k. This is very important, as the actual measured conductivity 
varies with temperature and time. 
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ABSTRACT 
 
 
We present computer simulations of the dynamics of beads in three dimensional micro flows 
studied with a Fluid Particle (FP) approach [1]. Our code has been parallelised employing 
dynamic load balancing and domain decomposition, allowing for the simulation of large 
enough systems in order to bridge the gap from mesoscopic scales to an effective description 
of complex and rheological fluids that are of relevance in micro- and nanofluidics. All 
constituents, channel walls, suspended objects etc. are made of FP, allowing for a very 
efficient implementation of the simulation code on parallel computers. The simulation method 
employed represents hydrodynamics in the continuum by discrete elements, so called Fluid 
Particles (FP) [2]. Rigid body motion of arbitrarily shaped extended objects is efficiently 
described by quaternion dynamics [3, 4], and arbitrary shaped geometries are generated via 
external CAD tools and imported into the simulation. As an application, we study the 
aggregation of hundreds of polystyrene (PS) beads in a flat assay structure and compare to a 
corresponding experiments [5]. The simulation has been tested on systems ranging from a 
single processor workstation up to PC-based clusters such as Dual-Core Opteron and high 
performance computers (HPC) (NEC Xeon EM64T Cluster). 
 
 
1. Introduction to Fluid Particle Methods and Quaternions 
 
In the simplest form of the Fluid Particle Method the force  acting on a particle is the sum 
of pairwise conservative, dissipative and random forces 

iF
( )∑ ++= R

ij
D

ij
C
iji FFFF  between 

particles in a certain cutoff radius  by solving Newtonian equations of motion with a 
Velocity-Verlet algorithm [1, 2]. If ir denotes the particle position, the conservative force 

 is a soft repulsion acting in the central line between particle and where 

Cr

ijij
C

ij
C
ij rA eF )(ω= i j

ijijjiij r rrrr =−= ,  and ijijij . The weight function r/re = ( ) ( )C
C rrr /1−=ω  vanishes for an 

interparticle distance r  larger than a cutoff radius Cr  usually set to the unit of length in all 
simulations. The combination of the dissipative and the random force acting as a thermostat in 
the simulation if the amplitudes σ  of the Gaussian shaped random variable ijξ  and the 
viscous dissipation γ satisfy a fluctuation-dissipation theorem:  with the 
Boltzmann constant and the temperature T  of the system. With the usual choice for the 
weight functions  [6] the dissipative force is given as 

TkBγσ 22 =
Bk

CR ωω =2)( ( ) ijijijij
DD

ij r eevF ⋅−= )(γω  
and the random force as . ijijij
Extended objects are modelled by “freezing” single particles into one arbitrarily shaped 
object. The dynamics of the objects as a whole is determined by center of mass motion and 

RR
ij r rF ξ)σω (=
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that of the body axes. In particular, the rotational motion of the quaternion approach is applied 
where four parameters (quaternions) ( )4321 ,,, qqqq≡q  describe the orientation of the object 
[6]. Similar to the matrix of rotation with the three Euler-angles ( )ψφθ ,,≡R  a rotational 
matrix depending on the quaternion can then be defined to transform any vector from 
the laboratory frame lf  into the quaternion description lfq

)(qA
v vqAV )(= and with the transposed 

of the rotational matrix back to the laboratory frame. In contrast to using Euler-angles, the 
quaternion approach leads to a singularity-free dynamics and avoids the calculation of 
trigonometric functions. According to the integration scheme of the FP, a Velocity-Verlet 
algorithm proposed by Omelyan [4] is used.  

TA

 
 
 2. Performance, Parallelisation and Code Structure 
 
The strategy for spanning multiple length- and timescales in a simulation is to run them on 
larger PC cluster and supercomputers with 100’s to 1000’s of processors. Our simulation code 
has been parallelised with Message-Passing Interface (MPI) employing a domain 
decomposition (see Fig. 1 a)). The performance can significantly be enhanced by a dynamic 
load balancing by weighting the actual workload on each processor. It ensures that particles 
are distributed evenly among all processors according to the predicted workload (see Fig. 
1 b)). The scaling on the NEC Xeon EM64T Cluster was tested with a simple fluid containing 
106 FP and a bead suspension with additional 2100 beads giving a 5 %  volume concentration 
(v/v) (see Fig. 2 a).  Each bead consists of 19 FP with the same density compared to the 
surrounding fluid and is propagated by the quaternion algorithm. A smaller simulation with 
4.5 105 FP was performed on a small Dual-Core Opteron Cluster with 1050 beads also leading 
to a 5 % (v/v) (see Fig. 2 b)). Both cases show for increasing number of processors at constant 
number of FP a super linear speed-up, indicating that field indexing and memory access 
effects are playing a negative role on the performance on single processor systems. 

  
Figure 1:  Parallelisation and performance 
(a) domain decomposition with MPI (b) 
dynamic loadbalancing (dlb) distribute the 
particles according to the predicted 
workload on the CPUs. 

Figure 2: Speed-up of the simulation code 
with a fluid and a bead suspension on (a) 
NEC Xeon EM64T cluster with max. 400 
Xeon CPUs @ 3.2GHz (b) Dual-Core 
Opteron cluster (6 CPUs @ 2.2GHz). 

 
 
3. Aggregation of Bead 
 
The aggregation of polystyrene micro-beads with a diameter of 150 µm is simulated and 
experimentally validated in a milled microfluidic structure (see Fig. 3). In the experiments as 
well as in the simulations beads are initially put in a collecting chamber (not shown here) and 
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are flowing through the inlet channel into the aggregation chamber. Each simulation for a 
predefined number of aggregating beads takes about 10 hours for ~2.5 105 FP on an Opteron 
Cluster calculated with 8 dual core CPUs. The rhomboidal aggregation part of the chamber 
can hold a maximum of 360 hexagonally accumulated beads with 177 FP per bead (see 
Fig. 3). Capture of beads at walls and corners induces imperfections in the layering that are   
 also present in the simulations (circle in Fig. 3) 
in particular the disturbance of the hexagonal 
order at round corners. The Peclet number for 
the simulated structure is calculated to 

15200Pe >>≈= BL/Dvρ  such that the residual 
stochastic motion is negligible (mean fluid 
velocity 17.0=v , length of the aggregation 
chamber ) with a diffusion constant of 
the beads according to the Stokes-Einstein 
relation of . All microfluidic 
geometries are generated with commercial 
CAD tools, subsequently meshed and then 
imported into the simulation where the mesh 
nodes are translated into particle position. 

97=L

0190.DB =

Figure 3:   Aggregation of 53 and 119 
polystyrene micro-beads (experiments left, 
simulations right).  

 
 
Conclusion 
We successfully presented the simulation of complex fluids in confined geometries at HPC 
with an extendable simulation code. The simulations with Peclet numbers greater than one are 
a good hydrodynamic representation of the system where convection dominates over 
diffusion showing that the simulation represents a systems at large time and length scales. 
With a change in parameterisation of the simulation the Peclet number can easily be reduced 
and then representing nano-scaled systems at small time and length scales. 
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ABSTRACT

We consider microstructures which are not inherent to the material but occur as a result of
deformation or other physical processes. Examples are martensitic twin-structures or dislo-
cation walls in single crystals and microcrack-fields in solids. An interesting feature of all
those microstructures is, that they tend to form similar spatial patterns, hinting at a univer-
sal underlying mechanism. For purely elastic materials this mechanism has been identified as
minimization of global energy. For non-quasiconvex potentials the minimizers are not anymore
continuous deformation fields, but small-scale fluctuations related to probability distributions
of deformation gradients, so-called Young-measures. These small scale fluctuations correspond
exactly to the observed material microstructures. The particular features of those, like orien-
tation or volume-ratios, can now be calculated via so-called relaxed potentials. We develop a
variational framework which allows to extend these concepts to inelastic materials. Central to
this framework will be a Lagrange functional consisting of the sum of elastic power and dissi-
pation due to change of internal state of the material. We will be able to obtain time-evolution
equations for the probability-distributions mentioned above. Possible applications are to crystal
plasticity, damage mechanics and phase-transformations.

1 Introduction

We investigate inelastic materials described by so-called internal or history- variables. Examples
include elastoplastic but also damaged materials or those undergoing phase-transformations.
By considering associated potentials in a time-incremental setting it is possible to model the
onset of the formation of microstructures but not their subsequent evolution, [1, 2, 3, 4, 5].
Here, some general ideas will be presented on how this problem could be treated.

2 Minimum Principles

In an isothermal setting the state of a general inelastic material will be defined by its deforma-
tion gradient F = ∇φ an a collection of internal variables: K. Denoting the specific Helmholtz
free energy by Ψ(F , K) we introduce thermodynamically conjugate stresses by P = ∂Ψ

∂F
,

Q = − ∂Ψ
∂K

. The evolution of K is then governed either by a so-called inelastic potential J(K, Q)

or its Legendre-transform, the dissipation functional: ∆(K, K̇) = sup
{

K̇ : Q−J(K, Q)
∣∣Q}

.
The evolution equations are then given in the two equivalent forms

K̇ ∈ ∂J

∂Q
, Q ∈ ∂∆

∂K̇
. (1)
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The entire evolution problen can now be described in terms of two minimum principles, where
we follow ideas presented in [6, 7, 5]. Considering the Gibbs free energy of the entire body

I(t,φ, K) =

∫
Ω

Ψ(∇φ, K)dV − `(t,φ) the deformation is given by the principle of minimum

potential energy:

φ = arg min
{
I(t,φ, K)

∣∣ φ = φ0 on Γϕ

}
. (2)

Here Ω is the material body, Γϕ a subset of its boundary and `(t,φ) the potential of external

forces. On the other hand introducing the Lagrange functional L(φ, K, K̇) =
d

dt
Ψ(∇φ, K) +

∆(K, K̇) we can write the evolution equation (1) in the form

K̇ = arg min
{
L(φ, K, K̇)

∣∣ K̇
}
. (3)

For rate-independent materials the principle (3) enables us to account for instantanious change
of the value of K, because it can be integrated to yield the balance law

Ψ(∇φ, K1)−Ψ(∇φ, K0) = −D(K0, K1), (4)

where

D(K0, K1) = inf
{ ∫ 1

0

∆(K(s), K̇(s)) ds
∣∣ K(0) = K0, K(1) = K1

}
(5)

is called dissipation-distance, [7]. When applied to a finite time-increment [tn, tn+1] equation
(4) gives rise to an approximate formulation, where φn+1 and Kn+1 at time tn+1 are determined
for given loading at time tn+1 and value of the internal variables Kn at time tn via the following
principle, [6, 7]:

{φn+1, Kn+1} =

arg min
{ ∫

Ω

{Ψ(∇φ, K) + D(Kn, K)} dV − `(tn+1, φ)
∣∣ φ, K

}
. (6)

3 Young-Measures

Carrying out the minimization with respect to K in (6) beforehand gives the so-called condensed
energy Ψcond

Kn
(F ) = inf

{
Ψ(F , K) + D(Kn, K)

∣∣ K
}

which has been used in the literature to
calulate the onset of microstructures, [1, 2, 3, 4, 5]. This approach, however, is not suitable
to describe the evolution of microstructures, because then the internal variables are already
microstructured at the beginning of the time-increment as a result of a relaxation process
in the preceeding time-increment. Or they are microstructured through the whole course of
continuous evolution. Hence, they have to be given in the form of so-called Young–measures.
We are going to give some concepts now, how such a formulation might be derived.

Young-measures are probability–distributions λF ≥ 0 given for example for the deformation-
gradient, i.e. on GL(d), and dependent on the material point. Thus they have the following
properties:

∫
λF dF = 1,

∫
λF̄ F̄ dF̄ = F . Moreover in the case of the deformation-gradient,

the probability-distribution has to be compatible, i.e. realizable by a deformation field φ. This
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means that 1
Ωrep

∫
Ωrep

Ψ(∇φ) dV =
∫
GL(d) λF̄ Ψ(F̄ ) dF̄ has to hold for all quasiconvex potentials

Ψ. In this case we call λF ∈ GYM a gradient Young-measure.
It is now, at least in principle, possible to define a relaxed energy and dissipation functional
via cross-quasiconvexication as

Ψrel(F , λK) = inf
{ ∫

ΛF̄ ,K̄Ψ(F̄ , K̄)dK̄ dF̄
∣∣ ∫

ΛF̄ ,K̄ dK̄ dF̄ = 1,

∫
ΛF̄ ,K̄ dK̄ ∈ GYM,

∫
ΛF̄ ,K dF̄ = λK ,

∫
ΛF̄ ,K̄ F̄ dK̄ dF̄ = F

}
, (7)

∆∗(λ̇K) = inf
{ ∫

ΛK0,K1D(K0, K1)dK0 dK1

∣∣
∫

ΛK0,K1 dK0 dK1 = 1,

∫
ΛK0,K1 dK0 = λ̇K ,

∫
ΛK0,K1 dK1 = −λ̇K

}
. (8)

Related concepts have already been introduced in somewhat different settings in [3].

4 Evolution Equations

With these definitions we recover the original principles (2) and (3), with the only difference
that the internal variables K have been replaced by the Young-measures λK . However, we
have to take care of the facts that λK ≥ 0 and

∫
λK dK = 1. Introducing this constraints via

Langrange- and Kuhn-Tucker-multipliers, respectively, the Lagrange functional in (3) assumes
the form

L(φ, λK , λ̇K) =
d

dt
Ψrel(∇φ, λK) + ∆∗(λ̇K) + α

∫
λ̇K dK −

∫
βK λ̇K dK, (9)

and we get the Kuhn-Tucker conditions

λ̇K ≥ 0, βK ≥ 0, λ̇KβK = 0. (10)

One main advantage of the present formulation is the fact, that it is possible to arrive at
evolution equations for λK . Thus we can avoid the solution of global minimization problems,
as was required when calculating the onset of microstructions via the condensed energy, [1].

For this purpose we define thermodynamically conjugate forces: qK = −∂Ψrel

∂λK
. Because of the

two constraints mentioned above the evolution problem inherits an active set structure and a
deviatoric structure. Therefore we introduce the active set A =

{
K

∣∣ λK > 0
}

and the active
deviator devA xK = xK −

(∫
A xK dK

)
1 as well as the restriction: xA = (xK)K∈A. We can

once again define an inelastic potential via Legendre-tranform by

J∗(qK) = inf
{ ∫

λ̇KqK dK −∆∗(λ̇K)
∣∣ λ̇K

}
= χ(Φ(qK)), (11)

which because of the rate-independence of the problem can be written in terms of the charac-
teristic function χ of a yield-function Φ. With this notation we obtain the desired evolution
equation

λ̇A ∈ devA
∂Φ

∂qK

∣∣∣∣
A

(12)
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along with the consistency condition

∂∆∗

∂λ̇K

− devA qK ≥ 0 for K 6∈ A. (13)

Here the inequality (13) plays the role of a switch determining when an inactive constraint
becomes active again.

5 Polycrystalline Shape-Memory-Alloys

We will now apply the theory developed before to polycrystalline shape-memory-alloys, Further
details concerning the model derived can be found in [8]. Our aim is to describe the behaviour of
polycrystalline shape–memory–alloys by considering the orientation–distribution of the various
martensite–variants. We will assume that within the polycrystal all desired orientations of
transformation–strain are equally available for the material in order to minimize energy. This
way we will be able to predict the internal reorientation of martensite. In order to capture
hysteresis effects we will assume that change in the orientation–distribution is accompanied by
dissipation.
The formulation presented allows to model all relevant features of shape–memory–alloys such
as pseudoelasticity and the shape–memory effect in an effective way. Moreover the orientation–
distribution of martensite–variants within the polycrystal is obtained which is an important
information that can be used to validate the model. We will close this report giving different
results of numerical simulations .
A spatially varying energetic description of microstructure formation in shape–memory alloys
was first given in [9] and extended to include inelasticity and dissipative effects in [6]. A
thermodynamical framework in the spirit of the present paper was given in [10].

6 Orientation Distribution and Relaxed Energy

Our model is based on the fundamental assumption, that looking at a sufficiently large rep-
resentative volume element within a polycrystalline shape–memory–alloy, there can be found
crystallites of arbitrary orientation. This fact allows the polycrystalline material to accomodate
any macroscopic deformation by producing any suitable orientation–distribution of martensite–
variants. Since we are dealing with transformation–strains of more than 10% we have to work
with a materially frame–indifferent constitutive model which we will achieve by a formulation
within a Lagrangian framework. In order to capture moderately large strains as required here,
we will use the material Hencky–tensor H = log U as fundamental strain–measure. Here
U = (F TF )1/2 denotes the material (right) stretch–tensor and F the deformation-gradient.
Let now U ∗ be the Bain–stretch–tensor, i.e. the transformation–stretch in principal coordinates
and H∗ = log U ∗ the corresponding Hencky–tensor. Let the principal stretches be u1, u2, u3

with Hencky–strains hi = log ui, then U ∗ and H∗ respectively are diagonal matricies with
entries ui and hi.
We assume that our material has N different orientations Ri ∈ SO3 of martensite–variants
available, where SO3 denotes the special orthogonal group consisting of all rotation tensors. Of
course in the limit N should become infinite. Here, however, we will assume N to be large but
finite for two reasons. The mathematical exposition to follow becomes more concise this way
and any numerical implementation has to resort to a finite N anyway. But this procedure does
not constitute a fundamental limitation of the approach. Now an orientation–distribution is
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given by volume ratios λi corresponding to orientations Ri. It has to hold

λi ≥ 0,
N∑

i=1

λi = 1. (14)

The transformation–strain corresponding to orientation Ri is then given by

Ki = RT
i H∗Ri. (15)

In addition we will denote by K0 = 0 the zero transformation–strain of the austenitic phase.
We will use an elastic energy which is linear and isotropic with respect to the Hencky–strains.
Let H i = log U i be the microscopic Hencky–strain exhibited by crystallites in orientation Ri,
then the specific energy of such crystallites is given by

Ψ(H i, Ki) =
1

2
(H i −Ki) : A : (H i −Ki) + ci, (16)

where A denotes the fourth–order tensor of elastic stiffnesses, given by Aijkl = Λδijδkl+2µδikδjl,
and “:” means contraction with respect to two indices. The chemical energy is given by ci, i.e.
we have ci = cA for austenite and ci = cM for martensite. Isotropy of the energy is of course
not given in a strict sense because there is a correspondence between crystal orientation and
orientation of the transformation–strain. But we will once again assume that there are enough
crystallites available close to a given orientation to effectively average out any anisotropy which
might occur.
The volume average of the various Hencky–strains is supposed to give the macroscopically
observed Hencky–strain H = log U , resulting in

N∑
i=1

λiH i = H . (17)

For a given orientation–distribution λ = (λi) we postulate the total energy to be minimized
by the material with respect to the different Hencky–strains. This leads to a so–called relaxed
energy defined by

Ψrel(H , λ) = inf
{ N∑

i=1

λiΨ(H i, Ki)
∣∣ H i,

N∑
i=1

λiH i = H
}
. (18)

This procedure corresponds to relaxation by convexification, which actually is a very crude way
to relax potentials. For more sophisticated methods and their mechanical interpretation see
[11, 12]. Models in a similiar spirit that the one presented here can also be found in [13, 14].
The minimization in 18 can be carried out in a straightforward way and yields

H i = H + Ki −
N∑

j=1

λjKj, (19)

and

Ψrel(H , λ) =
1

2
(H −Keff) : A : (H i −Keff) + ceff , (20)

where

Keff =
N∑

i=1

λiKi, ceff =
N∑

i=1

λici, (21)

denotes effective transformation–strain and chemical energy.
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7 Time Evolution

In order to close our model we would have to calculate the relaxed dissipation functional.λ.
Instead, we will directly choose it to be given as

∆∗(λ̇) = r|λ̇|, (22)

where “| · |” denotes the usual Euclidian norm of a vector. This choise is quite plausible given
the fact that ∆∗ should be isotropic in λ̇. The thermodynamically conjugate force to λ̇ is now
given by

qi = −∂Ψrel

∂λi

= Ki : A : (H −
N∑

j=1

λjKj)− ci. (23)

Then introducing the “yield–function” Φ(q) = | devA qA| − r we have

J(q) =

{
0 for Φ(q) < 0
∞ else

. (24)

With these notations the evolution law 12 along with the constraints 14 can be expressed in
the form

λ̇A = ρ devA qA, (25)

along the Kuhn–Tucker condition

ρ ≥ 0, Φ ≤ 0, ρ Φ = 0, (26)

and the consistency condition

(devA q)i ≤ 0 for i 6∈ A. (27)

The evolution equation 25 along with the conditions 26 and 27 can be integrated in a sta-
ble manner using algorithms developed in the context of finite–elastoplasticity. We do this
employing an operator–split algorithm as introduced in [15].

8 Examples

As numerical example we investigate a shear–test, i.e. we apply a deformation gradient of the

form F =

 1 γ12 0
0 1 0
0 0 1

.

In figure 1 hysteresis due to the shape–memory–effect is shown. This means we have cM < cA

and we start with equally distributed martensite. We display Cauchy shear–stress σ12 as a
function of γ12 for cyclic loading. For the points indicated the orientation–distribution λi for
i = 1, . . . , N (i.e. for martensite only) is plotted as a function of ϕi. There is no austenite
present at any time. We see that reorientation of martensite takes place in a highly complex
way.
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Figure 1: Pseudoplastic hysteresis

In figure 2 we model pseudoelastic behaviour. Now we have cA < cM. We start with pure
austenite. The same quantities as in figure 1 are depicted. Stress–driven phase–transformation
between austenite and martensite as well as reorientation of martensite takes place now. Con-
trary to the shape–memory–effect the orientation of martensite stays very localised.
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Figure 2: Pseudoelastic behaviour

9 Conclusion

We have shown how the evolution of microstructures can be described efficiently by employing
relaxation of nonconvex potentials. The approach is universally applicable to any kind of
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material exhibiting formation of microstructures. Relaxation leads by definition to well-posed
problems with regular solutions. Finite element implementations return mesh–independent
results. Finally the approach opens up a new perspective on continuum mechanics. In the
future one main goal will be the derivation of better relaxed energies and dissipation-functionals.
Also experimatal verification of the models will be an important issue.
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Abstract

Symplectic integrators are used in molecular dynamics simulations for their ex-
cellent long term behavior, due to the existence of the associated shadow Hamilto-
nian. Improvements in the efficiency of multiscale simulations can be obtained by
the introduction of symplectic multiple timestep methods such as Verlet-I/r-RESPA,
but these schemes generally require switches to separate the forces efficiently. The
authors derive the shadow Hamiltonian for this method, using backward error anal-
ysis, and show that it is dependent on the smoothness of these switches.

1 Introduction

In this paper we consider both the backward error analysis for Verlet-I/r-RESPA and
the effect of the addition of switching functions to split the potential energy. It had been
previously noted [1] that the lack of smoothness in a C1 continuous piecewise potential
had a “deleterious effect on the conservation of interpolated shadow Hamiltonians”. We
expand upon this result and extend it to switched potentials and the backward error
analysis of the Verlet-I/r-RESPA integrator.

2 Shadow Hamiltonian for the Verlet-I integrator

Given that a shadow Hamiltonian (for which the numerical results are the exact solu-
tion), Ĥ, exists it can be calculated using either the truncated or interpolated methods.
The truncated method, which can be found in [2], is

Ĥ = H + δtĤ(1) + δt2Ĥ(2) + · · · , (1)

where H is the original Hamiltonian and Ĥ(i) are the additional terms of the modified
Hamiltonian which are calculated by the backward error analysis [3] for timestep δt. In
general the series does not converge for non-linear systems and is truncated at some point.
The Verlet-I multiple timestep method, for a total time-step of rδt where r is the ratio
between the fast and slow steps, has the 4th order truncated shadow Hamiltonian

Ĥ[4T ] = H +
δt2

24

[
2
(
U′

f

)T
M−1U′

f − r2 (U′
s)

T
M−1U′

s − 2r2
(
U′

f

)T
M−1U′

s

− pTM−1U′′
f M−1p + 2r2pTM−1U′′

s M−1p
]

+O(δt4), (2)
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where q are the positions, p the momenta, and M the matrix of body masses. Potential
energies Us(q) gives rise to the ‘slow’ forces, with derivative U′

s and Hessian U′′
s , and

Uf (q) to the ‘fast’ forces, with derivative U′
f and Hessian U′′

f . The original Hamiltonian

being H = 1
2
pTM−1p + Us + Uf . We can see from this result that the continuity of the

potential energy terms Us and Uf , and hence the existence of derivatives, will provide an
upper bound to the order of the shadow Hamiltonian.

In [4] an alternative scheme was proposed whereby a homogeneous extension of the
original Hamiltonian, H̃, is considered. Given the extended homogeneous Hamiltonian
system

ẏh(t) = J̃H̃yh
(yh(t)) ,

for some J̃ and extended phase-space variables yh. We can then define

Ai,j =
∇iyh(t)

TJ̃∇jyh(t)

2δt
,

here the backward difference operator, for some function ω(t), is defined as ∇0ω(t) =
ω(t), ∇kω(t) = ∇k−1ω(t) − ∇k−1ω(t − h). It is then possible to derive kth order ap-
proximations for Ĥ in terms of the Ai,j using Newton’s interpolation. We then have, for

example, Ĥ[4] = A1,0 − 1
2
A2,0 + 2

3
A2,1, where Ĥ[k] is the kth order approximation of Ĥ.

3 Switching

Switches are required to split the force between short and long ranges so that a multiple
time-step integrator can be used. In order to retain the Hamiltonian the switch must be
applied to the energy. Commonly used switches for Lennard-Jones and Coulombic forces
have C1 continuity (NAMD and ProtoMol) which yield a vector field which is C0. The
following scheme, which can provide switches of arbitrary smoothness, was used for testing

Y n(aij) =





1 if aij ≤ ro,∑2n+1
k=0 γk

(
aij−rc

ro−rc

)k

if ro ≤ aij < rc,

0 if aij > rc.

Here ro is the switch-on value and rc the cutoff. The coefficients γk for a switch which has
smoothness Cn can be determined from the conditions Y n(ro) = 1, Y n(rc) = 0, and that
all derivatives up to dnY n/dan

ij must be zero when equated at rc and ro. The coefficients
for switches C2, C3, C4 and C6 are shown in Tab. 1.

n coefficients γi

3 4 5 6 7 8 9 10 11 12 13
2 10 -15 6
3 0 35 -84 70 -20
4 0 0 126 -420 540 -315 70
6 0 0 0 0 1716 -9009 20020 -24024 16380 -6006 924

Table 1: Coefficients for a Cn switches. Note γ1 = γ2 = 0 for all switches C2 and above.
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4 Experiments

To illustrate the effect of the switches on approximating the shadow Hamiltonian a
model of 216 water molecules using periodic boundary conditions (PBC) was used with
the Verlet-I integrator utilizing a step ratio r = 3. The results can be seen in Fig. 1 when
calculating the shadow Hamiltonian using a 12th order interpolated scheme.
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Figure 1: Ĥ[12] interpolated Shadow Hamiltonian for the Verlet-I method, 216 water
molecules with PBC model, for C2, C3, C4 and C6 switches.

5 Conclusion

As expected from the expansion of the truncated shadow Hamiltonian in Eqn. (2), we
have shown that the existence of derivatives of the potential energy terms determines the
order of the calculated shadow Hamiltonian, see Fig 1.
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Phase transformation in bacteriophage T4 tail sheath
Richard James

University of Minnesota, 110 Union St. SE, 55455 Minneapolis, United States of America

We describe an unusual phase transformation that occurs in the tail sheath of 
the virus bacteriophage T4. This transformation aids the invasion of the host. We 
then discuss new multiscale methods that can be used to study this transforma-
tion.  The simplifications afforded by these methods are intimately related to the 
special symmetries of tail sheath, but they have broad application to structures 
which, like T4 tail sheath, are composed of identical molecules for which cor-
responding atoms in each molecule „see“ the same atomic environment up to 
rotation and translation.
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ABSTRACT 
 
 

Based on previous work of one of the authors, we define “coarse grained” local observables 
for temperature and stress, which are thermodynamically consistent and continuously 
differentiable with respect to “coarse grained” coordinates. This allows for the construction of 
dynamical equations, where these observables are used as space-localized extensions of 
Hamilton's equations of motion. Since these new equations are designed to sample the free 
enthalpy ensemble, strong dynamical effects on e.g. the stress are not captured in the sense of 
mesoscopic transport equations. Therefore, additionally, we present a method to derive coarse 
scale equations from an atomistic model, together with the coupling of a coarse scale and an 
atomistic region, directly from an exact Hamiltonian. Reflectionless boundary conditions are 
used to avoid reflection of waves with small wave length at the interface and interpolation 
functions from coarse to fine scale are chosen in such a way that the dispersion relations on 
the coarse scale are correct. Unlike other coupling methods, this approach allows 
approximations directly in the Hamiltonian, leading to energy conserving approximated 
evolution equations, while keeping the correct transition between the two scales.  We also 
present a generalization of this coarse-fine scale coupling to finite temperature. 
 
 
1. Local observables and extended system methods 
 
We derive one-particle observables for Hamiltonian dynamics in the microcanonical 
ensemble, where the Hamiltonian is given by  
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we obtain  
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and note that the macroscopic continuity equation /m dn dt div =  p  is fulfilled if we use 
Hamilton’s equations of motion for the underlying particle dynamics. This motivates us to 
construct a stress tensor consistent with the macroscopic continuity equation for the linear 
momentum density,  for arbitrary but sufficiently smooth 
potential functions.  

( , ) ( , ) ( , ),extt t= ∇ ⋅ +rp r σ r f r& t

 
In order to do that, we embed the configuration space in a larger space of ordered differences 
and use an analytical continuation of the potential function. In the extended space, we apply 
the known construction of stress tensors for pair potentials, and project the result back into 
physical space. Using this approach, we obtain a stress tensor consistent with the macroscopic 
continuity equation for the linear momentum density. 
 
In the spirit of extended system methods, we now couple the temperature and stress 
observables as boundary conditions to the Hamiltonian dynamics:  
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where b has the same form as g, and is centered at the boundary, a is the integral of b, and the 
boundary pressure is given by 
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These dynamical equations conserve the energy function in  
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A symplectic interpretation of this dynamics then allows for the construction of numerical 
integration schemes with high stability, i.e. without energy drifts. Slight modifications of this 
dynamics will allow for the study of micro-crack dynamics for instance, where the cracks are 
fully within the inner region of a simulation cell and external stresses are implemented within 
the boundary conditions. 
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2. Coupling of atomistic and coarse scale region 
 
In order to capture strong dynamical effects we have derived equations coupling an atomistic 
region and a coarse grained region directly from the underlying Hamiltonian, assumed to be 
harmonic in the coarse grained region, by splitting  the displacements  into a coarse, cu , and a 
fine scale part, fu  [1], similar to the displacement splitting in [2]. They are defined as linear 
interpolation from coarse and fine scale variables, d and b, to the atomic equilibrium 
positions,  , with N and B the corresponding interpolation matrices. The 

coarse scale displacements, d, are defined on a regular coarse grid over the equilibrium 
positions of the atoms, the fine scale displacements, b, at their equilibrium positions in 
between the grid points, and the interpolation matrices  satisfy 

c fu u u Nd Bb= + = +

0TN B = .  
 

For coupling an atomistic and a coarse scale region, we split the fine scale displacements in 
two parts,  and , the first corresponding to the fine scale variables in the atomistic, the 
second in the coarse scale region. Again we require 

1b 2b

1 2 0TB B =  for the corresponding 
interpolation matrices. For harmonic interactions, we insert the displacement splitting in the 
Hamiltonian,  and derive the evolution equations 
 
  (1.1) 1 1 2 2(T TN MNd N K Nd B b B b= + +&& ),

),

+

  (1.2) 1 1 1 1 1 1 2 2(T TB MB b B K Nd B b B b= + +&&

  (1.3) 2 2 1 1
0

( ) ( ) ( )( ) ( ),
t

Tb t B K Nd B b t d R tθ τ τ τ= + −∫
 
Eqn.(1.3) provides a boundary condition for Eqns.(1.1) and (1.2) and is derived from a similar 
equation by Laplace transformation. These equations can also be derived from the Mori-
Zwanzig projection operator formalism [3]. 
 
Calculation of the boundary condition from all fine scale variables  is computationally 
expensive since it amounts to solving the whole atomistic system. But the derivation allows 
for approximations directly in the Hamiltonian, leading to energy conserving approximate 
evolution equations together with a reflectionless boundary condition. Numerical experiments 
showed that using only those variables near the interface is already enough to avoid 
reflections at the interface. However, if we neglect part of the variables , the wave speed in 
the coarse scale region changes. The reason is a change in the dispersion relation. We avoid 
this by choosing the interpolation from coarse to fine scale in such a way, that the difference 
between atomistic and coarse scale dispersion relation is reduced. At the same time, the 
support of the interpolation function of each node should be local in order to get a sparse 
coarse scale mass matrix, . We get very good agreement of the dispersion relations for 
interpolation functions with only a slightly larger support than for linear interpolation between 
the nodes. A possible approximation in the Hamiltonian is to use the boundary condition only 
for Eqn. (1.2) and neglect it in (1.1).  In Fig. 1 we show an example for this approximation. 
We used fine scale variables  only near the interface and the memory integral was 
computed over the last 200 time steps. 

2b

2b

TN MN

2b

 
The residual forces ( )R t  in Eqn.(1.3) formally depend on the initial conditions of the fine 
scale variables in the coarse scale region and, for non-zero temperature simulations, 
effectively constitute a heat bath, as discussed in the following section. 
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Figure1. One dimensional chain of 350 atoms.  Atomistic region of 100 atoms on the 
left, coupled  to a coarse scale region on the right of the domain. Left: energy in the 
atomistic    region for different interpolations, with and without boundary condition 
(bc), right: local stress for new interpolation in whole domain.     

 
 
3. Non-equilibrium NVT simulations 
 
We have derived and implemented a method [4] based on the Mori-Zwanzig projection 
operator formalism similar to Ref.[3] to embed a finite temperature MD simulation (NVT) of 
a crystaline, electrically insulating solid in a macroscopic continuum. This provides a 
reflectionless boundary condition, but neglects the coarse grained degrees of freedom outside 
the atomistic region, i.e. we only take into account Eqns.(1.2) and (1.3) while  in the 
limit of infinite coarse graining. The temperature dependent residual forces (“random forces”) 

0d =

( )R t  acting on the boundary atoms are sampled in pseudorandom fashion such that they 
satisfy the fluctuation-dissipation theorem ( ') ( ) ( ') / Bt t R t R t k Tγ − =< >  where ( 't t )γ −  is the 
memory kernel that results from inserting Eqn.(1.3) in Eqn.(1.2), and the brackets denote 
averaging over the canonical ensemble. Sampling ( )R t  is straightforward using the normal 
mode decomposition of the crystal. However, even if the normal modes are not known, 
knowledge of the memory kernel ( 't t )γ −  (which can also be obtained by other means than 
the above procedure or normal mode decomposition, e.g. by MD simulation) is sufficient to 
generate an approximate random force time series that fulfills the fluctutation-dissipation 
theorem. The method is suitable when the assumption of a homogeneous temperature 
distribution is not applicable, i.e. for non-equilibium molecular dynamics simulations of 
transport phenomena such as thermal conduction, or of phenomena which are local in space 
and/or time such as surface processes. The accuracy of the reflectionless boundary condition 
and of temperature control is validated for solid argon, even close to the melting transition. 
We will generalize the method to multiscale MD simulations of atomic and coarse grained 
degrees of freedom at finite temperature. 
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On some microscopic stochastic models of materials 
and their macroscopic limits

Claude LeBris
Ecole Nationale des Ponts et Chaussees, 6 & 8 avenue Blaise Pascal, Cite Descartes, Champs-sur-Marne,  

77455 Marne La Vallee Cedex 2, France

We introduce some notion of stochastic lattices that may be used for the mo-
delling of materials at the microscopic scale. We define the corresponding en-
ergies and investigate their macroscopic limits, with a view to defining macros-
copic densities of mechanical energies. We also establish the link between such 
questions and stochastic homogenization theory. This is a joint work with Xavier 
Blanc (Univ. Paris 6) and Pierre-Louis Lions (College de France).
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Partial thermostatting and multiple time-scale 
simulation of coarse-grained MD

Ben Leimkuhler
University of Leicester, Department of Mathematics, University of Leicester, LE2 1XH Leicester, United Kingdom

Coarse-grained molecular dynamics models create fundamental challenges for 
numerical simulation, including (1) barriers to effective thermalization among 
the various degrees of freedom and (2) difficulties for stable numerical integra-
tion of the equations of motion formulated on multiple time scales.    In this talk, 
I will discuss both of these challenges, describing dynamical thermostatting me-
thods that promise enhanced and targeted thermalization and also focussing 
on their use within a multiple timescale simulation framework.
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Self organized strain textures
Pol Lloveras

Universitat de Barcelona, Departament ECM, Facultat de Física, Av. Diagonal 647, 08028 Barcelona, Spain

We use a 2D Ginzburg-Landau free-energy expansion to study the strain pat-
terns observed in some martensitic materials both above and below the struc-
tural transition. Additionally to the standard order parameter (deviatoric strain) 
expansion, we include the non local anisotropic long range potential coming 
from the compatibility condition between the different components of the 
strain tensor. The existence of spatially correlated quenched disorder is also ta-
ken into account. It couples to the order parameter through the harmonic term 
and has an effect on the local transition temperature.

Purely relaxational simulations of the model show the formation of directional 
twin variants of the martensite below the transition temperature and self-or-
ganized strain textures (tweed) in the austenite phase. A coexistence between 
tweed and twins is also observed in a narrow temperature range, according to 
the first order character of the transition. Similar studies on magnetic models 
have revealed that short wavelength modulations of the magnetization (ma-
gnetic tweed) observed above the Curie temperature never coexist with the fer-
romagnetic dipolar phase, according to the second order character of the phase 
transition. The different phases observed in the simulations are characterized 
by means of the distribution of the order parameter and the volume fraction of 
transformed regions (martensite phase).

We have also studied the role of the long range anisotropic interactions on the 
stabilization of the structures observed. Physically, the relative weight of this 
term is related to the elastic anisotropy of the material. The result obtained is 
that the directionality of tweed and twins as well as their characteristic length 
scales decrease as the weight of this term is reduced. Therefore a large elastic 
anisotropy is a necessary condition for a material in order to show highly aniso-
tropic elastic strain patterns.
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From Electrons To Finite Elements: A Concurrent 
Multiscale Approach

Gang Lu 1, Ellad B. Tadmor 2

1Department of Physics & Astronomy, California State University Northridge, 18111 Nordhoff Street Department of 
Physics, 91330-8268 Northridge, USA

2Department of Aerospace Engineering and Mechanics, University of Minnesota, 55455 Minneapolis, USA

We have recently developed a multiscale modeling approach that concurrently 
couples quantum mechanical calculations for electrons, to empirical atomistic 
calculations for classical atoms, and to continuum mechanical calculations for 
finite elements, in a unified description [1]. In specific, the electronic structure 
calculations are performed with the plane-wave pseudopotential method ba-
sed on the density-functional theory (DFT), the classical atomistic simulations 
with the embedded-atom method (EAM), and the continuum calculations with 
the Cauchy-Born rule in the local Quasicontinuum (QC) formulation [2]. The 
multiscale method is implemented in the context of the QC framework with 
the additional capability to include DFT calculations for a selection of non-local 
QC atoms. A novel coupling scheme has been developed to combine the DFT 
and EAM calculations [3] in a seamless fashion to deal with non-local QC atoms, 
whereas the local QC atoms are treated in the usual way by the informed finite 
element calculations.

We apply this method to study crack propagation in Al. A mode I loading is ap-
plied to a (111)[110] crack. The atomistic mechanisms of dislocation nucleation 
from the crack tip, and crack propagation are investigated. In particular, the criti-
cal stress intensity factor is determined and compared to EAM-based QC results. 
The electronic states at the crack tip during the fracture process are examined in 
detail, and the relevant energetics are computed.
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Vertical and Horizontal Communication across Scales in 
Materials Simulations: Strain Localization in Al

Jaime Marian
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The fields of high-pressure physics and mechanics have received considerable 
attention in recent years as a result of a newly-sparked interest in detonation-
driven and spallation failure experiments and the development of new plastic 
and hydrodynamic theories. Nevertheless, these theories still rely excessively 
on a number of material parameters (typically more than a dozen) that are ob-
tained ad hoc or by way of semi-empirical estimations. A complete description 
of explosion-driven processes with a minimum amount of empiricism requires 
the consideration of multiple materials deformation mechanisms operating at 
multiple scales. The inherent multiscale character of spall, for example, requires 
that models developed to capture the relevant physical phenomena be cons-
tructed in such a way that multiple scales can be treated concurrently and/or 
sequentially. With the advent of supercomputers, these horizontal and vertical-
communication methodologies have become more and more plausible so that 
one is now able to self-consistently construct the physics of spall from the inside 
out and from the bottom up, from vacancy aggregation all the way to spall frag-
mentation. In this work we present finite-element simulations of ring expansion 
and cylindrical-plate spallation that use a continuum porous plasticity model as 
constitutive law which, in turn, has been fitted using mixed atomistic/mesoscale 
simulations. These atomistic/mesoscale simulations make use of parameter-less 
interatomic potentials and are employed to characterize void growth and coale-
scence. Void embryos are obtained by recourse to first-principles-fitted Monte 
Carlo calculations. The particular case of Al will be presented.
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Multiscale models for ion beam deposition
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The interaction of low energy ion beams with solid surfaces has become an 
important tool for the growth of thin films and the modification of interface 
topographies. Single deposition events can be studied by a concurrent coup-
ling of quantum, classical atomistic and continuum mechanics regions provided 
the different phonon dispersion relations are treated properly [1]. The surface 
modification by a random hail of ions can be described by a consecutive coup-
ling of quantum or classical molecular dynamics results and continuum growth 
equations for the surface topography. These strategies are exemplified for car-
bon nanomaterials and nanoparticle impacts. Recently, the ultrasmoothness of 
ion-beam grown diamond-like carbon coatings has been explained by a serial 
quantum/atomistic/continuum multiscale model [2]. At the atomic scale, carbon 
ion impacts induce downhill currents in the top layer of a growing film. At the 
continuum scale, these currents cause a rapid smoothing of initially rough subs-
trates via erosion of hills into neighboring hollows. The predicted surface evolu-
tion is in excellent agreement with atomic force microscopy measurements. This 
mechanism is general as shown by similar simulations for amorphous silicon [2] 
and films grown by energetic cluster impact [3].

[1] M.Moseler, J.Nordiek, H.Haberland, Reduction of the reflected pressure wave 
in the molecular-dynamics simulation of energetic particle-solid collisions, Phys. 
Rev. B 56, 15439 (1997)

[2] M. Moseler, P. Gumbsch, C. Casiraghi, A. Ferrari, J. Robertson, The ultrasmooth-
ness of diamond-like carbon, Science, 309, 2005, 1545-1548.

[3] M.Moseler, O.Rattunde, J.Nordiek, H.Haberland, On the origin of surface 
smoothing by energetic cluster impact: molecular dynamics simulation and me-
soscopic modeling, Nucl. Inst. & Methods B 164, 522 (2000)
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Nonlinear Dynamics of Transformation Induced 
Plasticity in Shape Memory Alloys (Experimental and 

Theoretical Study)
Oleg Naimark 1, Vladimir Leont‘ev 1, Sergey Uvarov 1

1Institute of Continuous Media Mechanics of Russian Academy of SCiences, 1 Acad.Korolev str., 614013 Perm, Russia

Statistical thermodynamics of martensitic transformation allowed the develop-
ment of phenomenology of transformation induced plasticity (TRIP) in the form 
of generalization of the Ginzburg-Landau phenomenology [1]. This variant of 
phenomenology reflects characteristic non-linearity of transformation and the 
linkage of thermodynamic driving force for martensitic variants growth with 
mechanisms of plastic accommodation at the boundary between austenite and 
martensite  phases. It was shown that the generation and growth of martensitic 
variants play both the role of driving force and structural heterogeneity (similar 
to the grains) for dislocation structures providing the accommodation of two 
phases in the form of TRIP. These features provide the properties of super-elas-
ticity and shape memory as the interaction of two transformations: phase (mar-
tensitic) transformation and structural-scaling transformation in the dislocation 
ensembles.  Three order parameters are responsible for thermodynamics and 
kinetics of mentioned transitions: transformation strain – deformation induced 
by the growth of martensitic variants, the defect density tensor – deformation 
induced by dislocation ensembles at the interphase boundary and the struc-
tural-scaling parameter related to the scale distribution of above parameters. 
Statistical description revealed the specific sense of structural-scaling parame-
ter that has the nature of the “effective temperature” for mesoscopic (disloca-
tion) structures. The analysis of kinetic equations for order parameters allowed 
us to establish two types of collective modes related to the transformation  and 
defect induced strains that have the features of the self-similar auto- solitare 
waves corresponding to the multiscale (controlled by the kinetics of structural-
scaling parameter) orientation transitions in ensembles of martensitic variants 
and dislocation ensembles. These results were supported by the experiments 
on the study of kinetics of transverse free oscillation damping of the Ti-Ni al-
loy string and the recording of force induced longitudinal finite amplitude dis-
turbances in mentioned preloaded string under the pass of critical stress for 
temperature providing the superelasticity. It was shown that the generation of 
collective modes lead to the anomalous damping in the case of free oscillation 
and dramatic decrease of the symmetry of system supported by the dimension 
(correlation) analysis of the stress portraits (the Poincare cross-section) recoded 
by piezo-ceramic gage. The hysteresis properties related to both type of trans-
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formations were studied experimentally in dynamic experiment realized in the 
split bar (Hopkinson) test for the strain rate range 102 – 104 s-1 that allowed the 
deeper penetration in the metastability area.

1. O.B.Naimark, L.V.Filimonova, V.A.Barannikov, V.A.Leont’ev and S.V.Uvarov. 
Non- linear dynamics of reversible plasticity in shape memory alloys, Physical 
Mesomechanics, 4, 5(2001), pp.13-27.
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Effective computation of single-slip elastoplastic microstructures

in finite strains

Carsten Carstensen‡, Sergio Conti† and Antonio Orlando‡

‡ Institut für Mathematik, Humboldt-Universität zu Berlin, Germany
† Fachbereich Mathematik, Universität Duisburg-Essen, Germany

ABSTRACT

The modeling of the elastoplastic behaviour of single crystals with infinite latent hardening
leads to a nonconvex energy density, whose minimization produces fine structures. The
computation of the quasiconvex envelope of the energy density involves the solution of
a global nonconvex optimization problem. Previous work based on a brute-force global
optimization algorithm faced huge numerical difficulties due to the presence of clusters of
local minima around the global one. We present a different approach which exploits the
structure of the problem both to achieve a fundamental understanding on the optimal
microstructure and, in parallel, to design an efficient numerical relaxation scheme.

1. Model Problem

We consider single-crystal plasticity in 2D with only one active slip system defined by s
and n, the slip direction on the slip plane and the normal to the slip plane, respectively.
We assume linear hardening law with the internal variable p ∈ R and hardening modulo
h, and the multiplicative decomposition of the deformation gradient F = FeFp with
Fp = I + γs ⊗ n, where γ ∈ R is the plastic slip. We focus only on the first time step of
a time-discrete scheme, and set equal to zero the initial values of the internal variables
(γ, p). Within the framework of rate-independent processes, the incremental problem
can be cast equivalently into a variational formulation expressed only in terms of the
deformation gradient F and can therefore be analysed by the methods of the calculus
of variations [1]. The free energy density W (Fe, p) and the dissipation potential J(γ, p)
define the constitutive behaviour of the single crystal, with W (Fe, p) being the sum of
an elastic We(Fe) and a plastic contribution Wp(p). Given the material constants µ, κ, if
detFe > 0

(1) We(Fe) =
κ

4
((detFe)

2 − 1) −
κ + 2µ

2
log (detFe) +

µ

2
(|Fe|

2 − 2) ,

otherwise We(Fe) = ∞, whereas Wp(p) = h
2
p2. As for the dissipation potential, we set

J(γ, p) = τcr|γ| if |γ|+p ≤ 0, with τcr the critical shear stress, otherwise J(γ, p) = ∞. This
model has been considered also in [2,3,4]. Minimizing out locally the internal variables
(γ, p) one obtains the condensed energy

(2) Wcond(F ) = U(F ) +
µ

2
(|F |2 − 2) −

1

2

(max(0, µ|Cs · n| − τcr))
2

µCs · s + h
,

with C = F TF . The energy density (2) is not rank-one convex and, hence, not quasi-
convex. As a result, one may expect non attainment of minimizers for the corresponding
functional, and developments of oscillations in the gradients of low-energy deformations.

1
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For the case under consideration, the occurrence of such microstructures has been indeed
shown in [2] by a direct finite element simulation using representative volume elements
under periodic boundary conditions. The macroscopic material behaviour can be, how-
ever, understood by minimizing out locally the possible microstructures and defining the
quasiconvex envelope of Wcond. Unfortunately, a closed form for quasiconvex envelopes
of condensed energies of the kind of Wcond is known only in few simplified cases [5,6,7]
and therefore, one usually resorts to an approximation to the rank-one convex envelope
W rc

cond(F ) based on laminates. Current approaches to the computation of W rc
cond(F ) resort

to brute-force global optimization techniques [2] or their variants where the computational
effort is reduced by fixing some laminate related parameters on the basis of conjectures
motivated by physical considerations [4,8].

2. Mixed analytical-numerical relaxation

We consider first an elastically rigid problem with Fe = Q for Q ∈ SO(2), and only the
contribution from the plastic free energy is considered, i.e., dissipation is neglected, as
described in [5]. The condensed energy for this case is then given by

(3) W ′(F ) =

{

h
2
γ2 if F = Q(I + γs ⊗ m) Q ∈ SO(2) ,

∞ else ,

with the quasiconvex envelope obtained in [5] as

(4) W ′

qc(F ) =

{

h
2
(|Fm|2 − 1) if det F = 1 and |Fs| ≤ 1 ,

∞ else .

The quasiconvex, rank-one convex, and polyconvex envelope are equal. In particular, the
optimal energy is given by a first-order laminate, which is supported on two matrices
which have plastic deformation γ of the same magnitude and opposite sign (for details
see [5]).

Inspired by results based on the global optimization [2], we then construct a more
refined model by assuming the microstructure to have the form of a laminate of second
order, which is supported either on rigid-plastic deformations or on purely elastic ones.
In this case, assuming volume-preserving deformations, the relaxation is reduced to a
global minimization of a function of only one variable which defines the orientation of
the laminate. Using this solution and the splitting of Fp from the analytic relaxation of
W ′

qc(F ) in [5] we obtain an approximate second order laminate. The latter is then used as
a starting point for the local minimization of the full energy density, including dissipation,
and removing the kinematic constraint.

3. Optimality check

In order to check whether the local minimum found in the previous section yields the
relaxed energy, in this section we consider the case of F being supported on the first order
laminate with phases

F0 = F − (1 − λ)ρa ⊗ b, F1 = F + λρa ⊗ b ,
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and relaxed energy equal to R(1)Wcond(F ). Let PWcond denote the polyconvex envelope
of Wcond, we recall

(5) PWcond(F ) = sup

{

`(F ) :
for all polyaffine ` with

`(A) ≤ Wr(A) for all A ∈ R2×2

}

where the generic polyaffine function in R
2×2 has the following expression

(6) `(A) = α + H : A + βdetA .

Assuming that there holds

(7) R(1)Wcond(F ) = PWcond(F )

this leads to the following system of 10 equations in 6 unknowns

(8)
α + H : F0 + βdetF0 = Wcond(F0) , α + H : F1 + βdetF1 = Wcond(F1) ,

H + βcofF0 = DWcond

DA

∣

∣

F0
, H + βcofF1 = DWcond

DA

∣

∣

F1
,

which is, however, determinated if condition (7) is met. Once this linear system is solved,
we check then that the following condition is met

min
A∈R2×2

{Wcond(A) − PWcond(A)} ≥ eps

which ensures that the polyaffine function that coincides with the unrelaxed energy on the
support of the laminate is below the condensed energy, up to a very small error eps ≥ 0.

4. Numerical example

In this section we report on the numerical relaxation of Wcond following the procedure
described in the previous sections for pure shear strain F = I + ξr ⊗ r⊥ with r = (1, 0),
r⊥ = (0, 1) and for the material constants µ = 1.0 · 104MPa, κ = 1.5 · 104MPa, h =
1.0 · 103MPa and τcr = 10MPa. Figure 1(a) depicts the condensed energy Wcond (see eq.
(2)) together with We (see eq (1)), W ′

qc (see eq (4)) and the value of the energy over the
approximate second order laminate (which we denote by f ∗∗(0)). We observe a very good
quantitative agreement for the values of the relaxed energy with those in [2] which had
required a significantly higher numerical effort. Also, approximations of the polyconvex
hull W pc

δ,r(F ), realized with the procedure described in [2] and in this paper are compared.
Figure 1(b) depicts the value of the volume fractions λ and λ1 whereas λ0 = 1. Initially,
the material is in a homogeneous elastic state. Then an elastic state and a mixture of two
opposite–slip plastic states appears. The volume fraction of the elastic phase starts at
100% and then decreases continuously until it vanishes at a shear ξ = 0.13. Both plastic
phases then progress with slowly varying volume fractions until the homogeneous phase
F is stable.
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Figure 1. (a) Bounds to the quasiconvex envelope of the condensed energy
for zero dissipation together with polyconvex and second-order laminate en-
velope for the condensed energy density in single-slip plasticity. (b) Volume
fractions λ and λ1 for different values of ξ.
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Long Time Scale Simulations of Atomic Structure and 
Dynamics at Defects in Metals   
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1Faculty of Science VR-II and Science Institute, Univ. of Iceland  
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Computer simulations of chemicals and materials on the atomic scale have pro-
ved to be useful in many scientific disciplines. They can provide insight and help 
interpret experimental results and in some cases even provide useful predic-
tions of properties of new chemicals or materials. A serious limitation of such si-
mulations, however, is the short time interval that can be simulated by standard 
approaches - on the order of nanoseconds. We make use of a recently develo-
ped algorithm that can be used to simulate time evolution of solids over longer 
time, on the order of milliseconds or more.

The Algorithms

The Kinetic Monte Carlo (KMC) algorithm has often been used to simulate long 
time scale evolution, but in its usual form it requires a predefined table of the 
events that are allowed to take place in the system. Those types of simulations 
can, therefore, only give rather limited information about the system. Transitions 
that had not been anticipated already before the simulation cannot occur. Also, 
in order to make a table of possible events, an assignment of the atoms to lattice 
points both before and after each transition is needed, making simulations of 
irregular structures such as defects and amorphous solids not possible. 

A recently developed adaptive-KMC (AKMC) method [1] extends the algorithm 
in such a way that a reference lattice is not needed and the mechanism of pos-
sible transitions is found during the simulation by locating first order saddle 
points on the potential energy surface. For each state of the system that comes 
up in the simulation, an unbiased search is made for low lying saddle points on 
the potential energy rim surrounding the initial state minimum. The rate of each 
transition is determined by assuming that Harmonic Transition State Theory is 
applicable, thereby requiring that the system is a solid at low enough tempe-
rature. The rate of each transition can be expressed as k = ν exp [ − ΔE / kBT], 
where the prefactor ν relates to the frequency of vibrational modes at the initial 
state as well as at the saddle point and ΔE is the energy difference between the 
reactant state and the saddle point. 

The saddle points are found by numerous, independent searches that start with 
a random displacement from the initial state minimum energy structure. Pre-
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based on an efficient algorithm for finding the lowest eigenvalue of the Hessian 
matrix and reversing the component of the atomic force vector along this direc-
tion. The AKMC method has been implemented in such a way that numerous 
saddle point searches are carried out simultaneously by distributing the com-
putational effort over a number of computers (see http://eon.cm.utexas.edu).

Results

The simulation described here corresponds to a grain boundary separating two 
crystalline domains in copper. A total of 1309 atoms corresponding to 22 ato-
mic layers and subject to periodic boundary conditions in the grain boundary 
plane were included. The temperature was set to 135 K. The simulation ran over 
a period of 10 days on 150 computers on average. The simulated time series 
represents a time interval of 0.1 ms. To obtain the same result with a classical 
dynamics algorithm (MD) on a 2 GHz PowerPC would require about 15 years of 
CPU time. A potential function of the EMT form was used to describe the inter-
atomic interactions [3]. 

Simulations have been carried out starting from two different initial structures. 
In the first case a narrow grain boundary was constructed by bringing grains 
with unreconstructed, flat surfaces into contact. In the second case, an amor-
phous region was placed in between the two grains. The final structure in both 
cases was very similar. The region of atoms that do not have a local FCC coor-
dination corresponds to about three layers. This thin grain boundary layer is 
quite consistent with reported experimental measurements on copper grain 
boundaries [4]. 

In two independent simulations a distinct annealing event led to the formation 
of an atom with a local HCP coordination. This is possibly related to an experi-
mentally observed tendency for twisted grain boundaries in gold to contain a 
domain of HCP coordinated atoms [5]. 

A remarkable feature of the simulations is the large abundance of transitions 
where multiple atoms undergo a concerted displacement. Figure 1 shows a hi-
stogram of the number of saddle points found where n atoms had been dis-
placed by more than 0.5 Å from the adjacent initial state configuration. It would 
be impossible to construct a complete table of such events in a regular KMC 
simulation.
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Figure 1, Histogram showing how many atoms where displaced by more than 
0.5 Å in going from an initial state to an adjacent saddle point during an AKMC 
simulation of a Cu grain boundary. The dynamics are dominated by concerted 
multiatom displacements.
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FLOWS IN INELASTIC MEDIA

Peter Popov
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States of America

In this work the problem of upscaling fluid flow in deformable porous media 
is studied. At the microscale, the physics of flow in deformable porous me-
dia is described by the fluid-structure interaction (FSI) problem. Currently, the 
well-established macroscopic models for poroelasticity can only be applied to 
linear elastic solids. Furthermore, macroscopic parameters such as average flu-
id pressure and solid displacements are subject to stringent limitations. In this 
work numerical upscaling methods based on the stationary FSI problem for de-
formable nonlinear solid and Stokes flow are developed. The strains in the so-
lid are assumed small but no restrictions are applied on the magnitude of the 
displacements. The FSI problem is solved numerically by an iterative procedure, 
which sequentially solves fluid and solid sub-problems. A specific geometry - a 
long channel with elastic walls - is then considered and an asymptotic solution 
is derived. The numerical results are shown to coincide with the asymptotics. 
Further, the asymptotic results is used to obtain an upscaled,  Nonlinear Darcy-
type equation for the averaged pressure. This result is used to justify a more ge-
neral 3D hybrid multiscale Finite Element model for flow in a general 3D porous 
solid subject to large pore-level displacements. Numerical results are presented 
and extensions to nonlinear histeretic solids are discussed.
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Multiscale Modelling of Microstructural Evolution
during Dynamic Recrystallisation coupling FEM and

CA

Ming Qian, Zheng Xiao Guo

Materials Department, Queen Mary University of London, Mile End Road,
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Abstract

Dynamic recrystallization (DRX) is a common phenomenon associated with high
temperature plastic deformation of metallic materials of a relatively low-to-medium
stacking fault energy. The DRX occurs only when the stress or dislocation density
reaches a critical value. Cellular Automata (CA) method is popularly used to simulate
the growth of recrystallized grains (R-grains) upon a set of finely meshed grids during
the deformation processing. Especially in two-phase materials (e.g., Ti6Al4V), DRX
nucleation occurs when the dislocation density accumulation is over the critical value.
In order to determine accurately the positions of nucleation of R-grains, a Finite Ele-
ment (FE) method was combined with the CA simulation. The main task is to couple
these two methods on different scale levels. The element length of the FE is around
1− 2× 10−5µm, which is almost 10 times of the CA grids (2× 10−6µm). The idea of
coupling can be divided into two parts. First is to directly project the distribution of
stress values from FE onto CA grids using a smoothing function supplied by the FE
package to meet the requirement of the CA calculation, and then replace the recrys-
tallization part of the strain values of FE element by a value calculated by CA. The
current analysis concentrates on the testing of the coupling methods. Even with the
limited computing time, the preliminary results show encouraging agreement with ex-
perimental findings. The approaches show good promise for such multiscale modelling
effort.

Keywords: Dynamic recrystallization, Finite Element method, Cellular Automata method

1 Introduction

Dynamic recrystallization (DRX) occurs during high temperature deformation of some metal-
lic materials. The main phenomena consists nucleation and grain growth, which takes place
where the critical deformation condition is reached [1]. In materials with low to medium
stacking fault energy, the dislocation density can be accumulated to a high enough level to
triger the DRX, because the recovery processes are slow. The grain boundary driving force
is from the difference between new grains and the matrix. The growth ceases when the
dislocation density reaches equilibrium [2].

High precision prediction is required in manufacture of metal forming processing. Many
researches have been done to simulate the DRX effects on metallic softening by using
FEM[3, 4, 5]. But almost every simulation uses constitutive equations to represent the
microstructure effect on strain-stress curves, which based on the assumption that the soft-
ening caused by DRX takes effect immediately when the deformation condition changes.
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These simulation ignored the dynamic mechanism of grain growth. In order to consider the
dyniamic microstructure evolution effect, a new coupling method is invited in this paper.

Cellualr Automata (CA) is wildly used method on microstructure simulation in materials
science area. The microstructure changes of either recrystalliztion and dynamic recrystal-
lization have also been studied by many researchers [6, 7, 8, 9]. CA has been proved to be a
very promising method to simulate the grain structure changes. If CA can be coupled with
FEM to supply more microstructure evolution information, a coupling method will become
very practically useful for manufacture processing design.

2 Model of Coupling Simulation

The hot deformation of metal can be considered as a combination effect of hardening and
softening processing occuring at same time. In this model, the hardening part is simulated
by using Finite Element Method, and the softening processing is done by using Cellular
Automata Method. The detail of FEM model, CA model and how to couple will be expressed
in the following separate sections.

2.1 FEM model

The role of FEM package in this simulation is to predict strain stress distribution caused
by the work-hardening effect on two phases materials. But in order to consider the work-
softening effect, which is DRX simulated by using CA in this case, the total strain rate is
described as

ε̇ = ε̇e + ε̇p + ε̇c (1)

where ε̇ is the total strain rate, and ε̇e, ε̇p and ε̇c represent the elastic part, plastic part and
softening part caused by DRX, respectively. As it is conventionally believed that the hot
work hardening is rate dependent, we also use a rate dependent model to describe the plastic
strain rate changes as

ε̇p
eff = ε̇eff ·

[
1−

(
1

σeff/E + 1

)m]
(2)

where ε̇p
eff is the effective plastic strain rate, and ε̇eff , σeff , E are effective strain rate,

effective stress and Elastic modulus, respectively. m is a rate dependent variable, which
differs from 20 to 100 according to different materials. In this simulation, it is set to be 50.
And now the plastic strain rate tensor ε̇ij can be given from

ε̇p
ij =

3ε̇p
eff

2σeff

σ′
ij (3)

where σ′
ij is the deviatoric stress tensor.
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The DRX part of strain rate tensor ε̇c
ij controls the changing of softening strain caused by

DRX. In order to avoid the suddent change of the strain, it is set to be a time dependent
function:

ε̇c
ij(t) =

εe
ij(t0)

∆t
sech2

(
t− t0
∆t

)
(4)

where εe
ij(t0) represents the elastic strain tensor at certain time t0, and δt is the time length

of one strain softening processing step. In this case, t0, the point of nucleation time for each
DRX-grain, differs from points to points. The reason of using function sech2(x) is that the
integration of this function equals 1. So the total effect of softening amplitude will be no
more than the elastic part of strain at the point of nucleation time.

2.2 CA model

As dislocation density is considered to play a very important role in the nucleation and grain
growth of DRX, it is set to be a key variable in CA simulation to evalue the microstructure
evolution. This CA model has been developed and validated by Ding [7] and Qian [6]. It is
worthy to remind the key part of the model. The flow stress is assumed to be proportional
to the square root of dislocation density [10] as:

σ = αµb
√

ρ (5)

The critical dislocation ρc trigers the onset of DRX nucleation. It can be derived from the
energy difference and deformation conditions by [11]:

ρc =

(
20γiε̇

3blMτ 2

)1/3
(6)

where γi, the grain boundary energy, b, Burger’s vector, l, the dislocation mean free path,M ,
the grain boundary mobility, and τ , the dislocation line energy, are independent to the time
t. The nucleation rate ṅ is set to be a probability of the number of ”ready for nucleation”
grain boundary cell.

The driving force of DRX grain, Fi is a function of the difference of dislocation density
between DRX grain and matrix, δρi:

Fi = 4πr2i τ∆ρ− 8πriγi (7)

And the boundary growing velocity can be calculated from:

Vi =MFi(4πr2i ) (8)

where M is the boundary mobility.
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2.3 Coupling FEM and CA

The goal of coupling of FEM and CA is to simulate the microstructure evolution more
accurately, especially at nucleation stage. It is designed to use FEM simulation to locate
where the cells are ”mature” enough to process the nucleation. And as long as FEM locates
the cells, CA takes over the job of simulate how nucleation sites are selected and grains grow.
As some of the nucleation and grain growth procedures can not be expressed by continuous
functions, the CA package is running explicitly. The data transferring between FEM and
CA are mainly stain tensor, stress tensor and time. All the necessary data for FEM to start
simulation from CA are shown in Equ.4, that is the strain tensor at nucleation time and the
time of nucleation. Equ.4 controls ε̇c

ij, and finally the stress reduction will take place where
ε̇e

ij represents the stress in Equ.1.

Each simulation of deformation is divided into small straining steps. After each straining
step simulated in FEM, stress and strain tensor is projected onto a finer CA grid. CA cells
perform the nucleation condition judging and possibly grain growth afterwards. And then
according to the CA results of straining, the necessary change of εe

ij(t0) and t0 in FEM is
updated. When the FEM initial condition is updated, a further straining will be applied.
This is the procedure of one coupling loop. The straining step is 0.01, and the deformation
condition is assumed to be isothermal and equilibrium for each single simulation.

3 Results and Discussion

Fig.2 is one set of the typical CA simulated DRX microstructure evolution configurations.
The specimen contains 20 grains at initial state, and 5 of them are α phase and rest are β
phase. The DRX nucleation is only allowed to take place on β−β or α−β phase boundaries.

Fig.3 shows the strain stress curves at different strain rate under 1123K. The occurrence of
DRX is earlier at lower strain rate. But the stress softening effect is larger for higher strain
rate. In the view of microstructure evolution, this has an explanation, that is: at lower strain
rate, the grains grow earlier and faster, and after a certain time the grain boundaries are all
occupied by DRX grains and no further DRX softening can take place. The elastic strain εe

at the time of nucleation occurrence is lower. According to Eqn.4, the ε̇c
ij is smaller if the

εe(t) is smaller.

Fig.?? shows the strain stress curves at strain rate 0.02−1 under different temperatures.
The similar phenomenon is found as strain rate effects. Higher temperature triggers DRX
more easily. But the reduction of stress is lower at higher temperature. And after DRX
grain ceases growing, the work-hardening becomes the dominating contribution to the stress
increasing. But DRX delays the hardening processes.

4 Conclusion

The coupled FEM and CA method is capable to simulate both microstructure evolution and
strain-stress behaviour of Dynamic Recrystalliztion. Temperature and strain rate effects on
nucleation critical condition is well simulated. Without considering metallic work-softening,
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DRX is the major softening mechanism of plastic deformation in some metals. DRX reduces
the stress by delaying the work-hardening processes, but can’t stop hardening after DRX
ceases.
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Figure 1: Microstructure evolution under strain rate 0.02−1 and temperature 1123K at strain
0.01, 0.05, 0.1 and 0.15 (black - α phase; gray - β phase; white - DRX grain).
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Figure 2: Strain stress curves under 1123K at strain rate 0.01−1, 0.02−1, 0.05−1, 0.1−1 and
0.5−1.
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Figure 3: Strain stress curves at strain rate 0.02−1 under temperature 1023K, 1123K and
1223K.
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Ting Qin 1, Ralf Drautz 2, David Pettifor 2

1Mansfield College, Mansfield College, OX1 3TF, Oxford, United Kingdom
2Department of Materials, Mansfield College, OX1 3TF, Oxford, United Kingdom

We present an ab initio study of the bcc transition metals V, Nb, Ta, Cr, Mo and W. 
For each element, we calculated the energy and elastic constants with respect 
to fifty structures types, including most of the metallic structure types existing 
in nature as well as some common non-metallic structure types plus interstitial 
and vacancy data. We find a surprisingly simple empirical relation between the 
calculated cohesive energy and the product of the bulk modulus with the cube 
root of the atomic volume. We demonstrate that a simple nearest-neighbour 
second-moment model is unable to explain this trend and discuss the require-
ments in order that an interatomic potential can reproduce the empirical rela-
tion. In particular, the relation clearly illustrates that the local density and gene-
ralized gradient approximation for exchange and correlation behave differently. 
This means that the common practice of fitting interatomic potentials to litera-
ture data that include LDA as well as GGA calculations should be reconsidered 
as the resulting potentials are unable to reproduce the trend found from our ab 
initio calculations.
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ABSTRACT 

Chemical Vapor Deposition (CVD) is a chemical process widely adopted in the semiconductor 
industry for the deposition of thin films of various materials, among which silicon. Quality and 
morphology of the deposited films depend on reactor fluid dynamics, surface chemistry and both 
gas phase and surface diffusive phenomena. Many models can describe these events singularly at 
their typical length scale, but a significant task is still to be able to link all of them in a unique 
predictive model. In this framework, we present a multiscale approach meant to describe the film 
morphological evolution at different time and length scales. Fluid dynamics and overall mass and 
energy balance are solved with the finite elements method in 2 dimensions while the 
morphological evolution of the film is investigated with 3D kinetic Monte Carlo. The two models 
are linked together by imposing continuity of gas phase concentration and fluxes at the boundary 
that is common to the domain of both models. In order to obtain a stable convergent scheme, 
information about the sensitivity of the microscale are incorporated into the reactor scale 
calculations by computing the Jacobian contribution at the reactor-surface boundary. This method 
allows self-consistent computations of gas-phase species concentration and fluxes between the 
different domains. 

We have then focused our attention on the role played by diffusive phenomena in the growth 
morphology of the film. Our KMC simulations show in fact how an essential role in the 
microscale is played by the amount of gaseous reactant fluxes hitting the surface and by the 
diffusive dynamics of adsorbed species. In particular the quantity of atomic hydrogen adsorbed 
and the interactions between Si ad-dimers appear to play a significant part in the morphological 
transition from an order terrace step flow growth to a disordered 3 dimensional growth regime.  

1. Introduction

The chemical vapor deposition (CVD) of silicon thin solid films is at the basis of the 
microelectronic industry, as it is a crucial stage for the manufacturing of many electronic devices. 
The comprehension of the main features characterizing its growth is fundamental in order to 
improve the quality of the deposited film, but it is complicated by chemical and physical events 
occurring at length scales differing for even some orders of magnitudes. 
In this framework the development of a model able to predict film properties (growth rate, 
morphological evolution of the surface,…) as a function of operative conditions (temperature, 
pressure, reactants flux and chemical composition,…) can give an important contribution to the 
advance of the silicon deposition technology. 
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2. Multiscale Model 

The multiscale approach here described is meant to investigate the influence that gas phase and 
surface reactions have on the morphological and compositional evolution of thin solid films 
deposited by chemical vapour deposition (CVD). Atomic scale energetic and kinetic parameters, 
when not available from the literature, were estimated by means of quantum chemistry 
computations. The local gas-phase composition, fluid dynamics and thermal fields were 
calculated by integration of mass, energy and momentum equations at the reactor scale using 
kinetic and thermodynamic data determined with quantum chemistry. The morphology of the 
film is finally investigated using 3D Kinetic Monte Carlo simulations, whose inputs are the gas-
phase fluxes calculated at the reactor scale and the kinetic parameters determined at the atomic 
scale.

1.1 Macroscale: reactor modeling 

At this scale the approach consists in the evaluation of flow and temperature fields and reactants 
distribution within the reactor through classical conservation equations of the chemical reaction 
engineering (i.e., continuity, momentum and energy conservation equations together with the 
mass conservation for the gas phase species). An important result of the simulation is the growth 
rate profile on the wafer and the gas temperature 2D field within the reactor. Two points are very 
important to obtain reliable macroscale simulations: the adopted parameters (rates of involved 
chemical reactions, thermodynamic and transport features of the gaseous mixture) and the 
detailed description of the reactor geometry. Mass, energy and momentum conservation 
equations are solved employing a two-dimensional Finite Element Method (FEM). 

 1.2 Microscale: surface morphological evolution 

For this scale of the system we choose to investigate the morphological evolution of the thin solid 
films with 3D Kinetic Monte Carlo, that has the advantage over other models to require as inputs 
kinetic constants or diffusion parameters that can be directly calculated by means of quantum 
chemistry. Our implementation of Kinetic Monte Carlo (KMC) follows the theory outlined by 
Fichthorn and Weinberg [1], with direct tracking of real-time and a rejection-free choice of the 
random transition. The starting conditions of the KMC simulation are the surface structure at 
time 0, the surface temperature and the fluxes of gas-phase species towards the surface. The 
output of a KMC simulation gives the detailed surface morphology of the film after the 
deposition of a certain amount of layers. 
It is thus possible to determine the growth regime of the film, be it 3D, terrace step flow or 2D. 

1.3 Linking of different models 

The first step of a calculation consists in the simulation at the reactor scale, in order to obtain a 
starting point for the microscale. The next step involves KMC calculations run separately for a 
predetermined number of points of the growth surface. It is important to point out that each one 
of these points corresponds to a point of the FEM mesh. Calculated adsorption flux are then 
passed back to the reactor scale and from this point FEM and KMC models are solved iteratively 
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until convergence is achieved. To improve convergence, the contribution of the KMC boundary 
condition to the FEM Jacobian was evaluated numerically, as proposed by Nemirovskaya [2]. 
Finally computed gas phase fluxes are is averaged on several nodes to decrease the statistical 
error. This method can be made particularly efficient if KMC computations are run in parallel, 
thus reducing the computational burden of n times, where n represents the number of mesh points 
that constitute the interface between macroscopic and microscopic scale. 
The two models are coupled imposing the continuity of the gas fluxes at the interface between the 
reactor and the portion of the susceptor on which the Monte Carlo Kinetic (KMC) computation is 
performed. Thus the KMC model appears as a Neumann boundary condition to the fluid dynamic 
reactor model.  

3. Simulations 

In order to show how our models work and which information can be obtained from simulations, 
some significant results taken from various investigated cases will be reported further below in 
this section. 

 3.1 Reactor scale 

Figure 1. Simulation of a vertical axysymmetrical reactor showing flux lines. Background 
colours represent the temperature field. 

In Fig.1 is displayed a calculation for a vertical axysymmetrical reactor in which gaseous 
precursors are fed from above and the susceptor (i.e.: the surface on which silicon is deposited) is 
located at the lower side of the reactor. For this geometry our simulations allow to examine the 
particular fluid dynamical behaviour of the gas current, which creates a double vortex probably 
because of convective phenomena due to the high temperature of the substrate. The temperature 
field itself can be seen for this case with the help of background colours that are related to the 
scale (expressed in Kelvin) placed at the left of the picture. This kind of simulations is often used 
to set up the geometry of the reactor to obtain the best fluid-dynamical configuration. 
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 3.2 Microscale 

Figure 2. Calculated Si surface morphology for a SiH4 gas phase flux of 1 ML/s after the 
deposition of 4 ML at different temperatures. 

In Fig. 2 are reported calculations for the deposition of Si in the absence of hydrogen at different 
surface temperatures performed with the KMC model. These simulations allow to examine the 
morphological evolution of the surface with particular attention to the growth regime. These data 
are particularly functional to determine the quality of the Si film growth. 

 3.3 Coupled system 

Figure 3. Reactor scheme(above) and 3 images of the  temporal evolution of the Si surface (green 
and blue spheres) with hydrogen adsorbed (red spheres). 

In Fig.3 we report calculations performed with coupled macroscale and microscale models. 
Below the sketch of the horizontal reactor, the 3 images represent a top view of the surface where 
red spots stand for hydrogen adatoms, while blue and green spheres correspond to Si atoms 
belonging to even and odd planes. These images reproduce the temporal evolution of the growth 
surface, giving useful information particularly about the transition from an order terrace step flow 
growth regime to a disordered three-dimensional growth regime. This morphological transition 
seems significantly influenced by the amount of the H atoms adsorbed on the surface.

References 

[1] K.A. Fichthorn, W.H. Weinberg, J. Chem. Phys. 95, (1991) 1090 
[2] M. Nemirovskaya, PhD Thesis, Multiscale modeling strategies for chemical vapor 
deposition, MIT, 2002.

Mathematical methods for bridging length and time scales

101



Relaxation of Semiconductor Nanostructures using
Molecular Dynamics with Analytic Bond Order Potentials

Kurt Scheerschmidt and Volker Kuhlmann

Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle, Germany
Email: schee@mpi-halle.de

Summary. Molecular dynamics simulations using empirical potentials have been performed to describe atomic
interactions during the relaxation of nanostructures. To include the quantum mechanical nature of atomic bonding
a tight-binding based bond order potential is developed applying analytically the most important momenta up to
6th order. The applicability of the bond order potential and resulting enhancements in structural predictions are
analyzed recalculating quantum dot relaxations and interface defects arising during bonding of two wafers with
twist rotation misalignment.

1 Introduction

Molecular dynamics (MD) simulations have been performed to study atomic processes related to the
reordering at interfaces and relaxation of nanostructures [1]. To enhance MD, we use the bond order
potential (BOP) based on the tight binding (TB) model, as it preserves the essential quantum mechanical
nature of atomic bonding, yet abandons the electronic degree of freedom. Just like ab initio methods,
TB calculations require complete diagonalisation of the Hamiltonian, which scales as O(N 3) and restricts
simulations to a few thousand atoms. The analytic BOP, however, achieves O(N) scaling by diagonalizing
the orthogonal TB-Hamiltonian approximately and is recognized as a fast and accurate model for atomic
interaction [2, 3]. It allows to explore the dynamics of systems on macroscopic time and length scales on
the atomic level that are beyond the realm of ab initio calculations. Thus enhanced empirical TB based
potentials make a sufficiently large number of particles and relaxation times up to μs accessible by MD
including the electronic structure and the nature of the covalent bonds indirectly. The ability of the BOP
based MD is demonstrated here by comparing relaxations of quantum dots and interface structures with
those using Tersoff potentials.

2 Analytic bond order potentials up to 6th moments

The approximations to develop analytic BOP potentials from DFT may be summarized by the following
steps (for details cf. [2, 3] and for the extensions cf. [4]): construct the TB matrix elements by Slater-Koster
two-centre integrals including s- and p- orbitals, transform the matrix to the bond representation, replace
the diagonalization by Lanczos recursion, obtain the momenta from the continued fraction representation
of the Green function up to order n for an analytic BOPn potential. The total cohesive potential energy
Ucoh has three contributions: pair repulsion, promotion energy Uprom, and bond energy as excess of
the band energy over the individual atomic interactions Ubond = 2

∑
iα,jβΘjβ,iαHiα,jβ . In the BOP

representation the matrix elements Hiα,jβ are replaced by the Slater-Koster two-center integrals hij

and the Goodwin-Skinner-Pettifor distance scaling function. The bond order Θiσ,jσ is equivalent to the

electron density for which a concise analytical expression
[
1 +

N2(Φi
2σ+Φj

2σ)+Φi
2σΦj

2σ(2N+�Φ4σ)

(N+�Φ4σ)2

]−1/2

can be

given that employs the normalized second and fourth moment (Φ2σ, Φ4σ) of the local density of electronic
states and �Φ4σ = (Φi

4σ + Φj
4σ −Φi2

2σ − Φj2
2σ)/(Φi

2σ + Φj
2σ), N2 = �Φ4σ + Φi

2σΦj
2σ). The contribution Φ4σ

to the 4th moment was given in terms of the matrix-elements of the tight binding Hamiltonian,

∑

k(i) �=j

ĥ4
ikg2

jik,
∑

k(i) �=j

k′(k) �=i,j

ĥ2
ikĥ2

kk′g2
jikg2

ikk′ ,
∑′

k(i),k′(i) �=j

ĥ2
ikĥ2

ik′gjikgkik′gik′ ,

with the cosine of the bond angle Cjik, the angular function gijk = (1 + p̂iCjik)/(1 + p̂i), reduced TB-

parameters p̂i = hppσ/hssσ, and normalized hopping integrals ĥik = hik/hij etc.
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The resulting semi-empirical many body potential is transferable to describe phases and configura-
tions not included in the parameter fit, a feature not found in other empirical potentials. Moreover,
transferability extends to different kinds of materials, where only the parameter need to be refitted. In
the implementation of the enhanced BOP4+ a number of angular terms are included that are related to
certain π bonds between neighboring atoms and contribute up to 40%, but were ignored previously. Both
contributions exhibit new angular dependencies, different from those already accounted for in the expres-
sions given in [2] and the second order BOP2 [5]. With the angle of torsion Cij,kk′ and the abbreviations
Z = Cij,kk′ + CjikCikk′ and ξ = π̂ip̂k/(1 + p̂i) one yields the new contribution to the 4-th momentum:

∑

k(i) �=j

k′(k) �=i,j

ĥ2
ikĥ2

kk′Zξ

( Zξ

(1 + p̂k)2
+

2gjikgikk′

1 + p̂k

)
.

Similarly on-site contributions to Φ4σ proportional to the energy splitting δi are included:

∑
ĥ2

ik

{
gjik(2δ̂2

i + δ̂2
k) + p̂iδ̂

2
i

(1 − Cjik)2

(1 + p̂i)2

}
+ δ̂4

i .

The improved BOP4+ allows nanoscopic structure calculations including electronic properties. Besides
an accurate fit, the BOP requires well parameterized TB matrix elements or parameter optimizing, and
the problem of transferability have to be considered separately. For BOP of order n = 2 [5] the bond-
order term looks like a Tersoff potential and the numerical behavior of BOP2 and the empirical Tersoff
potential are approximately equivalent. The details for the enhanced analytic BOP4+ [4] will be given
elsewhere, complicated angular terms occur, reflecting the non-radial electronic structure of the bonds.

(a) (b)

Fig. 1. MD relaxation of an SiGe/Si island: (a) Potential and total energy during annealing up to 900K, inset:
enlarged first 1000 steps relaxing start configuration at 0K, (b) 110 views after annealing with a Tersoff potential
(top) and an analytical BOP4+ (bottom).

3 BOP4+ in MD relaxation of quantum dots

A quantum dot (QD) is a nanometer scaled island or region of suitable material free-standing on or
embedded in semiconductor or other matrices. Especially shape, size and strain field of single QDs as
well as quality, density, and homogeneity of equisized and equishaped dot arrangements are important
features which control the optical properties, the emission and absorption of light, the lasing efficiency,
etc. MD with suitable potentials allows to describe the relaxation and to predict structural properties of
QDs.

Fig. 1 (a) shows the behavior of the potential and the total energy of a SiGe/Si-island and Fig. 1 (b)
the structural difference after relaxing the system up to 900K with Tersoff and BOP4+ potentials, re-
spectively. Due to the different next and overnext relations - hopping matrix elements up to 6th order -
the better stiffness of the BOP4+ yields better structural stability.
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4 BOP4+ in MD investigations of wafer bonded interfaces

Wafer bonding, i.e. the creation of interfaces by joining two wafer surfaces, has become an attractive
method for many practical applications in microelectronics, micromechanics or optoelectronics. The
macroscopic properties of bonded materials are mainly determined by the atomic processes at the in-
terfaces during the transition from adhesion to chemical bonding. Thus, the description of the atomic
processes is of increasing interest to support the experimental investigations or to predict the bonding
behavior. Whereas bonding of two perfectly aligned, identical wafers yields a single, perfectly bonded

(a) (b)

Fig. 2. MD simulated structural models of bonded wafers ([001] views, bond representation of 3 lattice planes
around the interface) with rotationally 2.8◦ twist angles (134500 atoms, 22nm box) annealed at 900K for orthog-
onal dimer start configurations: (a) Tersoff potential; (b) BOP4+ potential.

wafer without defects, miscut of the wafer results in steps on the wafer surfaces and thus edge disloca-
tions at the bonded interfaces are created. Bonding wafers with rotational twist leads additionally to a
network of screw dislocations at the interface, in dependence of the twist angle different bonding behavior
is observed as discussed in detail, e.g., in [6]. A special situation is the 90◦ twist, e.g. between monoatomic
steps, giving a (2x2) reconstructed interface and consisting of structural units called the 42m-dreidl [7].
The dreidl structure is found to be also the minimum energy configuration in DFT-LDA simulations.
All interface relaxations, however, are strongly influenced by the atomic potential model used, as it is
demonstrated in Figs. 2-4 comparing MD interface simulations with Tersoff and BOP4+, respectively.
Figs. 2 and 3 show the resulting minimum structures gained for higher annealing temperatures (900K)

Fig. 3. MD relaxation of bonding rotationally twisted wafers ([110] view) with 2.8◦ angle, 22nm box, orthogonal
dimers: structural difference using Tersoff (green) and BOP4+ potentials (red).

of a wafer bonded interface with a twist rotation of 2.8◦. The [001]-projections of the bonds normal to
the bonded interface up to overnext neighbors is given in Figs. 2 (a) and (b) for the MD relaxation with
Tersoff and BOP4+ potentials, respectively. In Fig. 3 the [110] projection is shown, with both the Tersoff
and the BOP4+ simulation projected by different colors into the same view. One reveals the more located
imperfectly bonded regions around the screw dislocations for the Tersoff potential, whereas the relax-
ation with BOP4+ yield more stability due to the higher potential stiffness according to the 6th moment
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hopping terms. Finally, in Fig. 4 the pair-, bond angle-, and torsion angle distributions are shown for
the 2.8◦-twist bonded interface, only 3 lattice planes around the interface are considered in distance and
angle counting. The Tersoff potential yields the characteristic first and second neighbor distances as well
as the bond angle of 109◦. The calculation with the BOP4+ demonstrates the characteristic deviations
due to the better description of the electronic bond structure. So, for instance, the Tersoff potential is
defined without torsion, thus the corresponding distribution in Fig. 4 (c) has no relevant peaks. However,
the angular distribution Fig. 4 (b) shows remarkable maxima at 95◦ and 125◦.

(a) (b) (c)

Fig. 4. Distribution functions for MD simulated structural models of bonded wafers with rotationally twist angle
of 2.8◦ annealed at 900K assuming Tersoff potential (blue) and BOP4+ potential (red): (a) radial distribution
function, (b) bond angles, and (c) torsion angles.

5 Conclusions

Molecular dynamics simulations (MD) based on empirical potentials are used to investigate the relax-
ation of nanostructures. It is demonstrated that different final structures for different potentials occur in
simulating, e.g., quantum dot relaxations or the bonding of two Si(001) wafers rotationally misaligned.
The angular and distance behavior near defects shows the better electronic potential structure for the
enhanced BOP4 potential. It clearly demonstrates the importance of enhanced empirical potentials as it
is given by the tight-binding based analytic bond-order potential BOP4+ up to 6th order momenta.
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ABSTRACT 
 
 

The present contribution will focus on recent transmission electron microscopy observations 
of structures at different length scales in materials undergoing phase transformations. The 
examples are chosen so as to provide links to possible mathematical models describing these 
features at their respective length scales. The latter range from the atomic scale when dealing 
with atomic structures over the nanoscale when looking at structural defects such as twin 
boundaries to the micron scale when talking about domain structures. An example of the first 
is the refinement of the atomic structure of the Ni4Ti3 precipitate formed in Ni-rich Ni-Ti 
alloys to enhance the shape memory behaviour, the 3D configuration of these precipitates an 
example of the last. Some other examples will be shown as well. 
 
 
1. Introduction 
 
When attempting to model real life structures or systems or situations the first aim should 
always be to reproduce existing cases that have been well documented by experiment. Only 
when a modeling environment stands the test of scrutiny against reality, one should think of 
applying the model to unknown situations that cannot be reproduced in the lab. In the present 
contribution we will present some examples of recently investigated real atomic or 
microstructures in solid state materials and of which the understanding could severely be 
improved by modeling on different length scales from the atomic to the continuum.  

The experimental observations are in most cases performed with transmission electron 
microscope (TEM) instruments which enable magnifications up to a few million times with 
resolutions down to one tenth of a nanometer, i.e., well below the interatomic distances in 
most solids. The effective nature of the technique implies that one observes a sort of 2D 
transformation of the internal structure (not exactly a projection, but close) with the actual 
image also depending on the imaging conditions such as focus of the objective lens and 
thickness of the sample. The latter needs to be extremely small, i.e. at least below 100 nm and 
for some cases even below 10 nm, and for this special sample preparation techniques need to 
be applied. On one occasion, the result of a three-dimensional slice-and-view technique 
obtained with a dual-beam scanning electron microscope (SEM) plus focused ion beam (FIB) 
instrument will be discussed.  

Although of course many different materials could be used as examples for the present 
purpose, alloy systems active in the field of shape memory or superelastic components are a 
very good candidate as aspects on many different length scales play important roles in these 
systems. Indeed, the physics (electronic structure, thermodynamics, …) of the stability of the 
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high temperature austenite versus low temperature martensite basic lattice structures 
determines not only the symmetry of these structures but also the transformation temperatures 
and their dependencies on, e.g., composition. Here discrete atomic scale modeling (e.g., 
density functional theory (DFT)) can be relevant to unravel the influence of different 
parameters such as electron density or distribution and bonding on the stability of the different 
structures and thus on the displacive (and sometimes more complex) transformation 
processes. On the next level the symmetry of martensite dictates the number of variants and 
austenite-martensite and martensite-martensite interfaces which in its turn leads to a variety of 
microstructures that can be modeled by different, usually continuum level methods. Modeling 
can also be used to investigate the growth of precipitates in a matrix and of the effect of that 
precipitate on the surrounding matrix and in the present contribution we will primarily focus 
on examples involving precipitates in different shape memory alloys, with the focus on Ni-
based systems. 
 
 
2. Precipitation in NiTi 
 
In the near-equiatomic NiTi system, which is often used for medical applications like stents 
and orthodontic wires [1] the crystal transforms from a cubic (B2) to a monoclinic (B19’) 
phase. This transformation can occur upon cooling or under the influence of an applied stress, 
in which case large strains might be obtained that can be fully recovered without plastic 
deformation. The properties of this transformation such as transformation temperature, 
number of transformation steps and whether it is superelastic or not are strongly influenced by 
the presence of Ni4Ti3 precipitates [2]. These precipitates have an ordered crystal structure 
and occur in the matrix after an appropriate heat treatment. They are enriched in Ni and have 
an estimated Ni:Ti = 4:3 composition ratio. The structure of these precipitates was first 
proposed by Tadaki et al. to be rhombohedral with spacegroup R-3 [3]. A morphological 
study by the same authors reveals a lens shape with 8 orientation variants.  
 
Fig 1a is a typical conventional TEM image of Ni4Ti3 lens shaped precipitates embedded in 
the matrix and oriented along different families of {111} planes. Depending on the annealing 
conditions (exact temperature and time) the precipitates will be larger and further apart or 
smaller and closer together. The particular lens shape of the precipitates is dictated by the 
contraction of the lattice in the direction perpendicular to the central plane of the disc of the 
lens. This contraction is made possible by the replacement of one Ti atom by one Ni atom and 
the subsequent reshuffling of atoms in the planes parallel to the central disc: Fig 1b shows a 
top view (i.e., looking down on the disc of the precipitate) of the refined structure revealing 
these shuffles. The latter was found by applying a novel technique of multi-slice least-squares 
optimization of electron diffraction intensities obtained from these nano-scaled precipitates 
[4]. Although this results from a relatively important composition change (i.e., with respect to 
the matrix) and although it implies a rather severe lattice change, only very small changes are 
observed in the fine structure of electron energy loss (so-called ELNES) spectra, which could 
be confirmed by density-of-states (DOS) calculations, indicating very little if any charge 
transfer at all [5]. The Young’s modulus, on the other hand, does change considerably, as 
could be shown by measurements of the position of the maximum of the plasmon peak in the 
low loss part of the energy loss spectrum, as seen from fig 1c. Following the criterium 
designed by Oleshko and Howe [6] values of 124 GPa and 175 GPa for the matrix, 
respectively precipitate, were obtained [5], showing a much harder precipitate in comparison 
with the matrix. 
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Figure 1. (a) Conventional TEM image of Ni4Ti3 lens shaped precipitates embedded in the 
NiTi matrix. (b) Projected structure of the refined structure of Ni4Ti3 in the [111]R direction. 

(c) Low loss part of the EELS spectrum showing the difference in the plasmon peaks between 
matrix and precipitate. 

 
As a result of the contraction of the precipitate, the austenite matrix close by the central disc 
of the precipitate will be expanded (seen as strain contrast in fig 1a) which in turn will 
possibly affect the ensuing martensitic transformation when the material is cooled or strained. 
Moreover, the enrichment of Ni in the precipitate will decrease the Ni amount in the matrix in 
the vicinity of the precipitate and again this can have a profound influence on the martensitic 
transformation temperature [1]. So in order to gain insight into these different aspects of the 
growth of these precipitates we performed quantitative analyses of the strain and 
concentration gradients in the matrix surrounding the precipitates. Fig 2 shows a deformation 
gradient measured along the [101]B2 direction of the NiTi matrix in between two nanoscale 
precipitates. The maximum deformation mounts to about 1.2% above the normal matrix 
lattice parameter (indicated by the horizontal dashed line in the graph on the right) and rapidly 
decreases after about 10 nm away from the precipitate-austenite interface. In between the 
precipitates there is a region of no deformation of about 20 nm. The measured deformation 
accounts for the total amount of strain necessary to accommodate the observed precipitates 
(when assuming a symmetric situation on either sides of the precipitates). These 
measurements were performed on high resolution images revealing the atomic lattices of the 
respective structures so that interplanar lattice spacings can directly or indirectly be measured 
[7]. 
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Figure 2. Deformation of the NiTi matrix as measured along the [101]B2 direction between 
two small Ni4Ti3 precipitates 

 
By performing spectroscopic measurements with nanoprobe or filtering techniques, 
concentration gradients revealing Ni depletion can be found. Regions between 10 and 150 nm 
wide, depending on the size of the precipitate, are depleted in Ni due to the Ni-enrichment of 
the precipitate: Ni/Ti ratios down to 0.94 instead of the nominal 1.04 of the matrix can be 
found in these areas. Again, quantification shows that these regions can provide all the Ni 
needed to form the precipitates [8]. For both strain and composition gradient cases, these new 
nanoscale quantifications may provide data that can allow for better modeling of the influence 
of the Ni4Ti3 precipitates on the martensitic transformation and thus the shape memory and 
superelastic behaviour of this material. 
 
Although TEM imaging, diffraction and spectroscopy can provide a wealth of information on 
the structure and chemistry and electronic nature of the material, obtaining true three-
dimensional information has always been a remaining challenge for microscopists working in 
micro- and nanoscale materials sciences. With recent evolutions of tomography, however, 
important steps have been taken to overcome technological as well as conceptual problems so 
that new results are appearing revealing the internal 3D nature of solid state materials. In fig 3 
an example of again the same precipitates, but now allowed to grow much larger, is shown in 
which a first glance is presented into the volume configuration of these lens shapes. This 
result was obtained by the slice-and-view technique in which a three-dimensional bulk piece 
of material of NiTi containing relatively large Ni4Ti3 precipitates is sliced away by a focused 
ion beam with imaging by a scanning electron microscope after every slicing. The stack of 
images is then afterwards combined to form a 3D volume picture box from which different 
types of measurements such as volume fractions, relative orientations, cuttings, etc. can be 
obtained. From the present image it can, e.g., be seen that the precipitates can truly intersect, 
which is sometimes hard to conclude from 2D images. Of course these new possibilities for 
3D imaging open new ways for interaction with modeling programs. 
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Figure 3. First 3D view of the Ni4Ti3 precipitates. 

 
Instead of controlling the characteristics of the alloy by changing the composition or thermal 
treatment, thermomechanical treatments can even further improve the functional properties. 
Amongst these, low temperature annealing following appropriate cold deformation is one of 
the effective methods for controlling shape memory properties. Freshly rolled material shows 
texture of nanoscale grains and small amorphous bands in the rolling direction while in 
annealed material the texture is lost and the bands gradually crystallize above 400°C [9]. 
Further short annealing above 450°C produces Ti2Ni precipitates while longer annealing 
above 500°C forms Ni4Ti3 precipitates. Annealing above 600°C produces Ni3Ti2 precipitates. 
 
 
3. Precipitation in CoAlNi 
 
Next to temperature and stress, in several novel shape memory alloys a magnetic field is used 
as a controlling factor of the martensitic transformation. One example is Co38Ni33Al29 in 
which small Co rich fcc precipitates are observed in as-received material. Fig 4a shows an 
area with relatively large rod-like shaped precipitates with sizes about 23 nm in length and 14 
nm in width. From electron diffraction it can be concluded that their crystallographic relation 
with the B2 matrix is of the Kurdjumov-Sachs type ((110)b.c.c.//(111)f.c.c., [-11-1]b.c.c.//[-
110]f.c.c.). Even smaller sphere-like precipitates are also observed in the same sample as seen 
from the high resolution image in fig 4b with fig 4c revealing the Co content in these 
precipitates obtained by energy filtered TEM. Again the distribution of these precipitates and 
their effects on the matrix will affect the martensitic transformation and thus the shape 
memory behaviour. Further detailed TEM investigations will provide more quantified data to 
exchange with modeling procedures. 
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Figure 4. fcc Co rich precipitates with K-S relationship with the B2 matrix in as-received 

Co38Ni33Al29: (a) rod-like shapes, (b) nano-spheres with (c) Co filtered image. 
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ABSTRACT 
 
 

A new model is proposed for the description of non-conventional features of mechanical 
behavior of metallic and composite materials with submicrocrystalline and nanostructure 
states, which are a result of the influence of the mesostructure of these materials. The main 
idea of the model is that for such materials the dislocation-based mechanisms of plastic 
deformation can not play the leading role due to restrictions of dimensions. On the contrary, 
the rotational mechanisms may play an important role, in particular in the form of grain 
boundary sliding. That is why using of a new degree of freedom of rotational nature is 
suggested in the plastic region of the deformation path. The equations of a new model for 2D 
plane strain case are stated. Some results of numerical calculations are presented and 
discussed. 
 
 
1. Introduction 
 
Microstructure investigation of materials with submicrocrystalline and nanostructures loaded 
in tension and compression has revealed development of rotation-shear mechanisms of plastic 
deformation promoted by the initial fine grain structure [1–3]. The rotational component plays 
the leading role in these mechanisms. Such features of mechanical behavior can not be 
explained by dislocation mechanisms of their deformation only. Hence, a realistic model for 
these materials must take into account the basic contribution of the rotational mode of 
inelastic deformation in the mechanical behavior. Examples of such approaches are some 
modifications of Cosserat continuum models [4]. They allow for taking into consideration 
rotational mode of deformation. The aim of this paper is to show a possible adaptation of 
Cosserat-like models for predicting the mechanical behaviour of materials with 
submicrocrystalline and nanostructures. 
 
Some experimental and analytical investigations show that for the macroscale description the 
new moduli are very close to zero for most materials [5]. But it must not be the case for the 
other length scales. We suppose to use the ideas of Cosserat media for the description of 
plastic deformation of submicrocrystalline and nano structured materials at the intermediate 
mesoscopic scale. The physical reason for such an approach is the evidence that conventional 
dislocation-based mechanisms of plastic deformation seem to have difficulties due to 
restrictions of dimensions. Whereas there are reasons to assume that the rotational 
mechanisms may play a very important role due to, for example, pronounced grain boundary 
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sliding and active behavior of interfaces in such materials. This is of particular importance for 
the mesoscale where the influence of material internal structure can not be neglected.  
 
 
2. Description of a New Model 
 
We shall restrict our consideration to the mesoscale only with taking into account the 
influence of microstructure from the micro scale by means of rotational degrees of freedom. 
We assume that at the initial stage of loading the conventional elasticity can be adopted. 
There are only displacements, symmetric strain and force stress tensors, the additional 
moment moduli equal zero. But starting from some critical point (specified by stress or strain) 
plastic deformation appears. As it grows the additional moduli increase smoothly also. This 
results in the appearance of asymmetric force stress, couple stress, and rotational degree of 
freedom. Under some conditions plastic curvature can also appear that gives rise to 
restrictions of not only force stress but of couple stress as well. This means that the new 
moment moduli are not the material parameters but functions which reflect at the mesoscale 
averagely the development of microscopic processes in non-stable nanostructured material 
under loading.  
 
Below we shall give the equations of the model for the case of 2D plane strain conditions 
following to [6, 7]. There are only two displacements , , and one independent rotation ω 
. The nonzero strains and curvatures as well as three equations of motion are written in Eqn 1 
and Eqn 2 respectively 

1u 2u

 
1,111 u=γ , ω−=γ 1,212 u , ω+=γ 2,121 u , 2,222 u=γ , 1,13 ω=κ , 2,23 ω=κ .  (1) 

12,211,11 u&&ρ=σ+σ ; 22,221,12 u&&ρ=σ+σ ; .  (2) ωρ=σ−σ+μ+μ &&l2
21122,231,13

 
The equation of continuity (conservation of mass) has the conventional form. We adopt the 
constitutive equations in the hypoelastic form (in rates) 
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Here , P is pressure,  is the deviatoric part of force stress tensor, V is the 
relative volume, l  is the radius of inertia of the media elementary volume, K and μ are bulk 
and shear moduli, respectively, α, γ, ε are new material parameters, 

ijijij sP +δ−=σ ijs

kjikkjikijij wsswss +−=~
&  

denotes the Jaumann time derivative and ( )ijjiij uuw ,,5.0 && −=  are the components of rotation 
velocity tensor (or spin). The components of couple stress tensor 31μ  and  are not equal to 
zero but they do not enter neither in the equations of motion nor in the equation of energy. 
Similarly to  they are necessary to provide the conditions of plane stress in the medium. 
So we need only ( )  as the modulus for couple stress. Here we have introduced a 
new elastic characteristic length . 

32μ

33σ
2)( elμ=ε+γ

el

According to our suggestion the parameters α and  equal zero at the initial stage of 
deformation. After yielding we adopt the flow rule  

el

 

Mathematical methods for bridging length and time scales

113



11
11 σ∂

∂
λ=γ σ
σ

fp && , 
22

22 σ∂
∂

λ=γ σ
σ

fp && , 
12

12 σ∂
∂

λ=γ σ
σ

fp && , 
21

21 σ∂
∂

λ=γ σ
σ

fp && , 
13

13 μ∂
∂

λ=κ μ
μ

fp && , 
23

23 μ∂
∂

λ=κ μ
μ

fp && ,  (4) 

 
and the following functions of plasticity 
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Here we have introduced also a plastic characteristic length . According to our assumption 
each of the moduli α and  grow with increasing of plastic strain accumulated 
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&&&& . In simplest case they can be assumed to equal some constants 

at the initial stage of plastic deformation.  
 
 
3. Results of Calculations 
 
Using a well known finite difference scheme described e.g. in [8] a computer code was 
written for solving the above mentioned set of dynamic equation (with taking into account 
inertia terms).  
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Figure 1. A scheme of loading (a) and 2D distributions of effective plastic strain for 

conventional elastic perfect plastic model obtained using meshes 50×100 (b), 100×200 (c), 
and for the proposed Cosserat model (d), for conventional (e) and Cosserat (f) models with 
hardening. Distributions of accumulated plastic deformation along the vertical section 

cm for different calculation grids and ideal plastic models used (g) and for models 
with hardening (h). 
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The aim of our test calculation was to reveal the features of strain localization which the 
model can describe (the thickness of the bands). Stretching of an isotropic elastic perfect 
plastic rectangular sample 5×10 cm was considered. Upper and bottom sides were forced to 
move in opposite directions without possibility to move in perpendicular direction. The 
geometry is displayed schematically in Fig. 1, a. Such kind of loading results in stress 
concentration at the angular points. Four strain localization bands stem from these points. In 
Fig. 1 one can see the distributions of plastic strain intensity  (or effective von Mises 
strain) for different calculation grids and the model used. The material parameters were the 
following: GPa, GPa, 

pe

67.166=K 92.76=μ 100=α GPa, 8.7=ρ g/cm3, MPa, 

cm. The calculation results show that there is no essential mesh sensitivity in 
the presented numerical code for a conventional dynamical elastic perfect plastic model. 
Taking into account couple stress and rotations results in reduction of strain localization, the 
distribution of plastic strains becomes less inhomogeneous, the bands become thicker but the 
peak values decrease. Similar calculations carried outed for the work hardening material give 
the results shown in Fig. 1, e,f. Here 

300=Y

1.0== pe ll

( ) 2.01300 peY += MPa. One can see that in this case the 
bands are thicker as compared to perfect plasticity both for the conventional and Cosserast 
model. At the same time the difference in distributions of plastic strain for conventional and 
Cosserat models is smaller then in this case of the model with hardening. 
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Two-dimensional finite element (FE) simulations generally do not describe the 
mechanical behaviour of complex materials adequately. Plane strain or plane 
stress conditions are simplifications which can deliver unrealistic results, if the 
significant details are not included. Two factors make three-dimensional calcu-
lations of the real microstructures difficult: (1) the lack of correct information 
about the spatial composition and (2) the enlarged number of finite elements. 
In this situation an important point is the thickness of the model measured in 
terms of the microstructural length scale. The model should be “thick” enough 
in order to deliver correct results, but too big thickness unnecessarily enlarges 
the model.

Three-dimensional calculations of the strain and stress patterns, using finite 
element method, were performed on the model of Al/Al2O3 composite with 
different thicknesses and compared with two-dimensional simulations of local 
strains. Moreover, local strains in tomogram-based 3D-model of an Ag/Ni-com-
posite were simulated and compared with experimental results of plastic strains 
measured using the microgrid technique.

The thickness of the 3D-model of a certain structure should be at least equal to 
the characteristic microstructural length in order to find a realistic strain distribu-
tion on the model surface. However, a clear answer to the question “how to de-
fine the characteristic microstructural length”, needs more investigations in the 
future. This paper tries to give a guideline, how to define the minimal dimension 
of the 3D-model which provides correct results concerning local strains.
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We have developed a multi-scale method to simulate diffusional phase changes 
in dilute binary and ternary alloys by Monte Carlo simulation of the motion of a 
vacancy in the presence of long-range elastic interactions [1,2]. We have applied 
the methodology to the formation of GP zones in Al- Cu and Al-Cu-Mg alloys. 
Short-range interactions are described through interatomic forces and local ato-
mic relaxation, which lead to vacancy trapping at interfaces and misfitting so-
lute atoms. Long-range anharmonic interactions are described through the use 
of the Lanczos recursion method and bias the diffusional jumps of the vacancy. 
The simulation is accelerated using a stochastic second order residence time 
algorithm. The effect of long-range elastic interactions on the microstructural 
development has been assessed.
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Inferring the in vivo looping properties of DNA
Jose Vilar 1, Leonor Saiz 1, Miguel Rubi 2

1Computational Biology Center, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box #460, 10021 New 
York, United States of America

2Departament de Fisica Fonamental, Universitat de Barcelona, Diagonal 647, Barcelona, 08028, Spain

The free energy of looping DNA by proteins and protein complexes determines 
to what extent distal DNA sites can affect each other. We inferred its in vivo 
value through a combined computational–experimental approach for different 
lengths of the loop and found that, in addition to the intrinsic periodicity of the 
DNA double helix, the free energy has an oscillatory component of about half 
the helical period. Moreover, the oscillations have such an amplitude that the ef-
fects of regulatory molecules become strongly dependent on their precise DNA 
positioning and yet easily tunable by their cooperative interactions. These un-
expected results can confer to the physical properties of DNA a more prominent 
role at shaping the properties of gene regulation than previously thought.
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Atomistic - continuum coupling on stepped surfaces in 
epitaxial growth

Axel Voigt
Research Center Caesar, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany

We overcome limitations of classical step flow models, such as the Burton-Cab-
rera-Frank model, to far from equilibrium growth regimes by combining an 
atomistic description at the steps with a continuous modeling away from it. By 
doing so, the only remaining parameters in the model are energy barriers for in-
dividual processes of single atoms, which can be computed from first principles. 
We will discuss various instabilities and scaling laws for the roughening of the 
film. Furthermore first numerical results of the full model obtained with least-
square, parametric and composite finite elements will be demonstrated.

Mathematical methods for bridging length and time scales

119



Multi-scale modeling of dislocation pile-ups.
Roman Voskoboynikov

University of Oxford, Mathematical Institute, 24-29 St Giles‘, OX1 3LB, Oxford, United Kingdom

Sometimes microscopic (e.g. atomistic) considerations are too time-consuming 
and numerically expensive to be conducted whereas solutions of the problem at 
a larger scale can be obtained relatively easy. In fortunate circumstances, some 
details at the microscopic scale can be deduced from the large scale solution. 
This can happen when modelling simple configurations of large numbers of dis-
locations.

We illustrate this situation for dislocation pile-ups against the interface in a bi-
metallic solid. Provided the shear modulus of the dislocation-free half-space is 
larger than that of the adjacent half-space harbouring the dislocations, the in-
terface repels the dislocations and an equilibrium dislocation distribution exists. 
This problem has been solved in terms of the continuum theory of dislocations 
[1]. However, the continuum dislocation density diverges at the interface and 
cannot be used for evaluation of the stress there, which the continuum model 
predicts to be infinite. The microscopic model on the scale of the dislocation 
spacing regularizes the continuum approximation and by studying this model 
we can approximate the equilibrium positions of the distinct dislocations and 
the total stress created at the interface, as a function of shear modulus, the num-
ber of dislocations and the applied loading.

[1] J.G.Kuang and T.Mura, J.Appl.Phys., 39(1968)109
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Mathematical challenges in dislocation pile-up 
modeling

Roman Voskoboynikov
University of Oxford, Mathematical Institute, 24-29 St Giles‘, OX1 3LB, Oxford, United Kingdom

An accurate treatment of dislocation pile-up near the interfacial boundary is 
attempted. Based on the theory of pile-ups of discrete dislocations [1] in a uni-
form material, their equilibrium positions in a linear array against the interface 
in a bimetallic solid are found as roots of the solution of an ordinary differential 
equation (ODE) equivalent to the force balance equation in the vicinity of each 
dislocation. The form of the ODE depends on the continuous dislocation density 
in the pile-up that was found in [2]. The ODE is solved using asymptotic methods 
and matching at transition regions. Special attention is paid to the evaluation of 
the dislocation positions near the interface, where the problem is reduced to an 
integral equation that can be solved using the Wiener-Hopf technique. The total 
stress created at the interface is estimated as a function of shear modulus, the 
number of dislocations and the applied loading.

[1] J.D.Eshelby, F.C.Frank and F.R.N.Nabarro, Phil.Mag. 42(1951)351.

[2] J.G.Kuang and T.Mura, J.Appl.Phys. 39(1968)109
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Homogenized Maxwell‘s Equations; A Model for 
Ceramic Varistors

Niklas Wellander 1, Björn Birnir 2

1Swedish Defence Research Agency, FOI, P.O. Box 1165, SE-581 11 Linköping, Sweden
2Department of Mathematics, University of California, 93106 Santa Barbara, USA

Varistor ceramics are very heterogeneous nonlinear conductors, used in devices 
to protect electrical equipment against voltage surges in power lines. The fine 
structure in the material induces highly oscillating coefficients in the elliptic 
electrostatic equation as well as in the Maxwell equations.

We suggest how the properties of ceramic varistors can be simulated by solving 
the homogenized problems, i.e. the corresponding homogenized elliptic pro-
blem and the homogenized Maxwell equations. The fine scales in the model 
yield local equations coupled with the global homogenized equations. Lower 
and upper bounds are also given for the overall electric conductivity of varistor 
ceramics. These two bounds are associated with two types of failures in varistor 
ceramics. The upper bound corresponds to thermal heating and the puncture 
failure due to localization of strong currents. The lower bound corresponds to 
fracturing of the varistor, due to charge build up at the grain boundaries resul-
ting in stress caused by the piezoelectric property of the varistor.
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Studies on Meshless Thermal-Mechanical Analysis 
Method 

LEI ZHANG
WORCESTER POLYTECHNIC INSTITUTE, 100 INSTITUTE RD, 01609 WORCESTER, United States of America

An integrated meshless thermal-mechanical analysis method is studied, with an 
FPM (Finite Point Method) based solidification model and an MLPG (Meshless 
Local Petrov-Galerkin) based thermal elastic-plastic analysis model. The MLPG 
method is more stable and accurate than FPM method, but it requires local 
background cells for the integration, which will greatly increase computation 
cost. To simplify the calculation of MLPG, a collocation scheme used in FPM is 
introduced in this study, where the radius of the cells of the inner points is set 
to zero. This means that the MLPG formulas on these points are only implemen-
ted once, and it is not necessary to calculate the Gauss integral points as in the 
original procedure. The modified method has been successfully verified and 
applied to the simulation of the solidification process and the thermal stress 
analysis of continuous casting billet in mold. The results are consistent with the 
measurement. It shows the characteristics of stress and strain distribution and 
the formation mechanism of the off-corner defects. The method is comparable 
in accuracy with the FEM method. The observations also show that the method 
is suitable for the analysis of the continuous casting process.
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Hybrid Multiscale Modelling of the Propagation of Grain 
Boundaries in Epitaxial Growth

S. C. Hendy 1, T. P. Schulze 2, Peter Zoontjens 3,1

1MacDiarmid Institute for Advanced Materials and Nanotechnology, Industrial Research Ltd, Lower Hutt, New 
Zealand

2Department of Mathematics, University of Tennessee, 37996 Knoxville, USA
3School of Chemical and Physical Sciences, Victoria University of Wellington, PO box 600, 6001 Wellington, New 

Zealand

A frequent defect in epitaxial growth on fcc (111) is the stacking fault. This oc-
curs when adatom islands nucleate and grow in hcp stacking. Such islands form 
grain boundaries where they impinge on fcc islands. In certain conditions the 
grain boundaries can migrate, converting hcp islands to fcc or vice versa, which 
can eliminate stacking faults. Various studies [1,2] of such processes, including 
Kinetic Monte Carlo simulations have been carried out.

This work investigates the migration of grain boundaries and associated pro-
cesses, using a hybrid multiscale model. The model decomposes the system 
under study into concurrently coupled Molecular Dynamics and Kinetic Monte 
Carlo simulations, in which the Molecular Dynamics region adaptively follows 
the migration of the grain boundary.

When as in this case, significant parts of the system may be treated with Kinetic 
Monte Carlo, the hybrid model can provide accuracy close to a full Molecular 
Dynamics simulation at greatly reduced computational cost. The complexity of 
the grain boundary makes it unsuitable for Kinetic Monte Carlo modelling. Also 
with the hybrid model it is feasible to study processes over longer timescales, gi-
ven the cost saving compared to full Molecular Dynamics. Hence this research is 
expected to elucidate the mechanisms underlying the migration of grain boun-
daries in a range of circumstances.

[1] C. Busse et al PRL 91 056103 (2003)

[2] W.L. Ling et al PRL 95 166105 (2005)
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Structure-property relations for “oriented” and “unori-
ented” thermoplastic elastomers

Pedro Ponte Castaneda
University of Pennsylvania, Mechanical Engineering and Applied Mechanics, 19104-6315 Philadelphia, USA

Thermoplastic elastomers (TPEs) are multiphase polymeric materials, which con-
sist of a “soft” phase (e.g., polybutadiene) giving rise to the rubbery nature of the 
materials, and a “hard” glassy phase (e.g., polystyrene) yielding increased stiff-
ness and enhanced large-deformation properties. More specifically, here we will 
deal with styrenic TPEs, which are ABA-triblock copolymers deriving their supe-
rior properties from a self-assembly process where the hard blocks act as ancho-
ring points for the soft blocks in a way somewhat analogous to cross-linking in a 
vulcanized rubber. Because the self-assembly process takes place at the level of 
molecules, these materials develop a “domain” structure at the nanometer sca-
le, or nanostructure (lamellar, double-gyroid, hexagonally distributed cylinders 
and BCC-distributed spheres). However, under typical processing conditions, 
they also develop a “granular” structure at the micron level, or microstructure, 
which is similar to that of metal polycrystals. Therefore, TPEs exhibit structure 
a two different length scales and there is growing experimental evidence that 
this dual structure greatly affects the overall response of macroscopic samples. 
Because TPEs constitute a huge industry, and are expected to replace traditio-
nal vulcanates in many applications, there is great interest in manipulating this 
structure to optimize their mechanical response.

We will make use of a multiscale modeling approach to characterize the strongly 
nonlinear dependence of the macroscopic mechanical properties of TPEs on the 
structure at the domain and polycrystal levels. For this purpose, variational ho-
mogenization techniques originally developed by the author will be utilized. 
Applications will be developed both for “oriented” (i.e., single crystal) and “uno-
riented” (i.e., polycrystal) samples for which comprehensive data is available for 
the macroscopic stress-strain response, as well as for the structure and its evolu-
tion through SAXS and TEM observations. The ultimate objective is to develop 
constitutive models for these materials systems, which will additionally account 
for the evolution of the relevant nano- and micro-structures, leading to the pos-
sible development of macroscopic instabilities.
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