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ABSTRACT 

 Complexity and heterogeneity of bone tissue require a multiscale modelling to 

understand their mechanical behaviour and their remodelling mechanism. Human cortical 

bone structure consists of six structural scale levels which are the (macroscopic) cortical bone, 

osteonal, lamellar, fibrous, fibril and microfibril. In this paper, a 3D model based on finite 

elements method was achieved to study the nanomechanical behaviour of collagen 

Microfibril. The mechanical properties and the geometry (gap, overlap and diameter) of both 

tropocollagen and mineral were taken into consideration as well as the effects of cross-links. 

An inverse identification method has been applied to determine equivalent averaged 

properties in order to link up these nanoscopic characteristics to the macroscopic mechanical 

behaviour of bone tissue. Results of nanostructure modelling of the nanomechanical 

properties of strain deformation under varying cross-links were investigated in this work.  

 

Keywords: Cortical bone; Nanostructure; Multiscale modelling; Finite elements; 

Mechanical properties; Microfibril; Inverse identification method. 

 

 

1. Introduction 

A long bone like the femur consists of three parties from the center outward: the 

marrow, the spongy bone and cortical bone. In this study we are interested only in compact 

bone. A microscopic analysis reveals a complex architecture that can be described as follows. 

The bone is a composite material: it must imagine hollow cylinders juxtaposed next to each 

other and sealed by a matrix. The cylinders are called Osteon, the inner bore Haversian canal 

and the matrix pore system. Further analysis shows that osteons are in fact an assembly of 

cylindrical strips embedded in each other and each blade is composed of a network of fibers 

wound helically oriented collagen and inserted into hydroxyapatite crystals. The orientation of 

collagen fibers may be different between two consecutive slices. These fibers are one set of 

fibrils. Each fibril is in turn composed of micro fibrils. Finally, each micro fibril is a helical 

arrangement of five tropocollagen molecules. Fig1.provides a better understanding of this 

large complex architecture. 

 

In the previous multiscale studies of cortical bone, it’s used to be started by microfibril 

as compound mentioning only its geometry and its special arrangement of molecular rows, 

with neither regarding less its mechanical behaviours, on other word there are neither 

analytical studies nor numerical modeling at this level of scale. The most notable studies are 

those of Jager and Fratzl, 2000, Andreas Fritsch 2009, Markus 2008, [1, 2, 3, 4]. However, 

this work focuses on modeling of fibril scale, that is to say a larger scale than the one we 

want, our job is to fill this gap. 

 

 

 

13



14



0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0 20 40 60

d
a

m
p

in
g

 c
o

e
ff

ic
ie

n
t

Number of  cross-links

E2=62.75

E2=114

E2=150

E2=170

 

 

3. Methods 

In this work we have used the method of finite elements in order to investigate the 

mechanical behavior of the microfibril, its damping capacity and its fracture resistance. The 

outputs of this simulation are used as inputs for the inverse identification method to identify 

equivalent properties, Young's modulus and Poisson's ratio of the microfibril. 

 

 

A three- dimensional model of collagen microfibril with symmetric and periodic 

boundary conditions is considered here, with an array of 5 tropocollagen molecules cross-

linked together using springs, the all is put into a mineral matrix. An entire plan of experience 

has been considered in order to investigate the influence of all geometric and mechanical 

parameters on the mechanical behaviour of the microfibril under the varying number of cross-

links. 
 

 An inverse method was applied to identify the equivalent properties. A Newton 

Raphson algorithm written in python was coupled to Abaqus code, allows us to identify these 

properties. 

 
 

4. Results 

Below an example of the results of finite element simulation with E1 is the Young's 

modulus of collagen and E2 is the Young's modulus of the mineral. Fig4 illustrate the 

damping capacity of microfibril under different loading. Both graphs show the effect of 

number of cross links on the mechanical behaviour of the microfibril. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The maximum efforts determined by finite element numerical simulation are 

introduced in the program of inverse identification method in order to indentify equivalent 

properties. The two graphs below illustrate some of the results. 

 

 

 

Figure 4.Relation between damping coefficient  

and number of cross-links with E1=2GPa 
 

Figure3. FE Von Mises stress  contour 
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5. Conclusion 

In this paper we study for the first time the mechanical behaviour of the microfibril. 

This work also allows us to understand better this nanoscale and study the upper level scale 

which is the collagen fibril with the same methods by using the results found in this scale. 
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ABSTRACT

The mechanisms underlying the deformation near nanovoids in FCC materials when
subjected to triaxial deformation is analysed using numerical simulations with the Quasi-
continuum method. The complex structure of dislocations around the nanovoid and the
evolution of stress, deformation and temperature of the sample is described in the present
work.

1. Introduction

Atomistic simulations of materials have gained recent interest due to their applications
in nano and micro mechanics. To understand the mechanical response of materials sub-
ject to dynamical loads the knowledge of the physical and thermodynamical properties
of materials is required. In particular, we are interests in studying the response around
nanovoids to understand deformation-dependent properties and their relation with the
temperature field. In this paper we focus on the tri-axial strain response of FCC single
crystal containing a nanovoid.

Molecular dynamics (MD) techniques have been used by many authors to study the
mechanical response of materials with nano voids. However, a correct simulation of plastic
phenomena requires the use of very large systems and appropriate boundary conditions,
which may result in complex MD models. In this sense, multiscale (MS) modelling pro-
vides an alternative to MD simulation, especially for this type of problem. Particular MS
technique, the Quasicontinuum method (QC) [1] has been succefully employed to many
researches in the past. In the current work, QC method with extension to systems in
thermodynamic equilibrium and non-equilibrium is used.

2. Methodology

2.1 The Quasicontinuum method

QC is a method for systematically coarse-graining lattice statics models. The method
starts with a small and complete atomistic system around a core defect. Then the rest of
the crystal is modelled in the geometry and reducing the configuration space of the crystal
trough a judicious application of a finite element-based kinematic constraints. To avoid
full lattice sums, only atoms in small clusters, surrounding the representative atoms must
be visited for computing the effective out-of-balance forces. Additionally, the selection of
representative atoms is performed adaptively based on the local strain of the elements.
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Figure 1: Virial Stress vs Volumetric Strain for adiabatic and isothermal case.

The tolerance governing the adaptation process is set so that the full atomistic resolution
is attained only in the presence of dislocations.

The force among atoms is directly computed by empirical potentials. As in conventional
continuum mechanics, QC permits the direct simulation of systems controlled through the
application of remote boundary conditions. Details of the implementation of QC used in
the present study and an analysis of convergence of the method may be found in [1]

2.2 Equilibrium and Non-Equilibrium QC

The QC extension to systems in thermodynamic equilibrium and non-equilibrium was
developed in [2]. This extension is possible by the application of a variational mean-
field theory and the maximum-entropy (max-ent) formalism. Using this formalism, we
can directly approximate the probability density function to find the system in a certain
state, not necessarily an equilibrium state. In this model, every representative atom has
local state variables akin to temperature, entropy in addition to position, as parameters
that determine the local statistics of the atom. Then, the max-ent variational principle
provides the most likely probability density function within the assumed mean-field class
and consistent with all constraints on the systems.

Attention to macroscopic processes that are quasi-static is performed. Under these con-
ditions, the net result of the max-ent procedure is to define a non-equilibrium free energy
depending on the positions and temperatures of all the atoms. The non-equilibrium free
energy is computed explicitly by numerical quadratures and the result may be regarded
as a temperature-dependent interatomic potential. The stable configuration of the system
is found by minimization of the free energy for a given temperature field.

The next step in the development of the method therefore concerns the computations
of the evolving temperature field. We accomplish this by coupling the free-energy min-
imization problem to a diffusion form of the energy-balance equation. The proper form
of the coupling is suggested by the variational formulation of coupled thermo-mechanics
problems proposed in [3].

3. Numerical test

Results are shown for numerical tests according to a non-equilibrium finite temperature
problem using QC method. A nanovoid problem is considered to study the geometry and
the temperature field of atoms around of a nanovoid. This problem has been studied by
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Figure 2: Core defect around nanovoid. Atoms are coloured with the CSD parameter.
(Left) (1 1 1) cut plane. (Right) Core defect around nanovoid.

many authors, but none of them have included systems outside equilibrium. Also, the
purpose of these tests is to understand the nucleation of particular arrangement of atoms
around a nanovoid and the evolution of the temperature field in this process.

3.1 Test problem definition

The sample is a FCC nearest-neighbor LJ crystal with 72a0 × 72a0 × 72a0 cube, or
34.6 nm of length in size, and a total of 194,509 atoms. An equiaxed 3.35 nm void is ini-
tially created in the center of the cell with full atomistic resolution being provided ab initio

within a 8a0 ×8a0 ×8a0 region surrounding the void. The initial mesh contains 681 nodes.
Solid Argon is used as a test material since it can be modelled using LJ pair potential. The
external load consist in a void expansion by prescribing pure dilatational displacements in
the exterior boundary of the computational cell and the external deformation is increased
by steps of 0.1% increments. At each loading step, a new stable equilibrium configura-
tion is obtained by using the Polak-Ribière variant of the non-linear conjugate gradient
algorithm. Before the loading process, the sample is allowed to equilibrate isothermally
at uniform temperature of T = 0.5Tm, with Tm = 83K being the melting temperature.
Additionally, the test is performed with two time step equal to ∆t = 0 which is adiabatic
and ∆t = 30[kσ/kB] with its intermediate between the adiabatic and isothermal case.

3.2 Results and discussion

Fig. 1 shows the evolution of the average virial stress vs. the volumetric deformation
εv = ∆V/V0. In both cases, the curve shows three main stages. First a region with
non-linear regime up to 6 % of deformation. This stages is followed by two linear steps,
with change in the slope. This change in the slope is due to a boundary interaction of the
sample. Finally, an interval with strong non-linearity indicates the fragile failure of the
material. Before the fragile failure of the sample, the structure of the atoms around the
nanovoid is show in Fig. 2 . Here, the spatial arrangement of the atoms is indicated using
the adimensional centrosymmetry parameter [4]. Fig. 3-a shows the normal displacement
field around nanovoid at x = 0 plane for a 18,5% volumetric strain. Note that the sample
is split into four parts, and the atoms are displaced from the symmetry plane. In this
step the atoms around the nanovoid have elevated energy, and present an increment in
the temperature with respect to the atoms far away from the nanovoid. For the adiabatic
case, this increment is approximately of 10,5 % for atoms near the nanovoid (Fig. 3-b).
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Figure 3: Displacement and Temperature map after the failure superposed around a
nanovoid in arbitrary units.

4. Conclusions and Future Works

In this work we have studied the thermo-mechanical behavior of an argon crystal with a
nano-void in the center. An extension of the Quasicontinuum method to non-equilibrium
systems has provided a detailed solution of the forces, deformation, and temperature at
every point of the sample, with atomistic resolution close to the defect. In this region,
both adiabatic as well as isothermal simulations indicate that a fragile fracture occurs in
the material shortly after dislocation structures appear. The multiscale resolution of the
Quasicontinuum approach then serves to compute a macroscopic response of the whole
crystal, where fracture is clearly identified. Future extensions of this work include larger
samples and the study of materials other than argon, especially metals.
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We present an application of the theory of discrete dislocations to the analysis of 
dislocations in graphene. We discuss the specialization of the theory to graphene 
and its further specialization to the force-constant model of Aizawa et al. (1990). 
The ability of the discrete dislocation theory to predict dislocation core structures 
and energies is critically assessed for periodic arrangements of dipoles and 
quadrupoles. We show that, with the aid of the discrete Fourier transform, these 
problems are amenable to exact solution within the framework of discrete 
dislocation theory, which confers the theory a distinct advantage over conventional 
atomistic models. In particular, the discrete dislocation theory predicts 5-7 ring 
core structures that are consistent with observation and dislocation energies that 
fall within the range of prediction of other models. 

Figure 1. Discrete dipole core structure for the Aizawa et al. [1990] potential, exhibiting 
double pentagon-heptagon ring (5-7) structure. 

 

We also present an assessment of the finite-temperature dynamical stability of 
discrete dislocations in graphene. In order to ascertain stability, we insert discrete 
dislocation quadrupole configurations into molecular dynamics calculations as 
initial conditions. In calculations we use Sandia National Laboratories Large-scale 
Atomic/Molecular Massively Parallel Simulator (LAMMPS) and the (AIREBO). The 
analysis shows that the core structures predicted by discrete dislocation theory are 
dynamically stable up to temperatures of 2,500K, though they tend to relax 
somewhat in the course of molecular dynamics.  
 
Aizawa, T., Souda, R., Otani, S., Ishizawa, Y., Oshima, C., 1990. Bond softening in 
monolayer graphite formed on transition-metal carbide surfaces. Physical Review B 42 
(18), 11469–11478. 
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ABSTRACT 

 
The quasicontinuum (QC) method reduces computational costs of atomistic calculations by 

using interpolation between a small number of so-called repatoms to represent the 

displacements of the complete lattice and by selecting a small number of sampling atoms to 

estimate the total potential energy of the interpolated problem. In this contribution two new 

sampling point selections are introduced for the QC method. The first selection determines the 

total potential energy of the lattice exactly in correspondence with the interpolation. Since no 

error due to summation occurs, the fully resolved regions around lattice defects can remain 

small. However, in this case many sampling atoms must be used. Therefore a second 

sampling point selection is derived from the first selection that uses only one sampling atom 

to represent all atoms within interpolation together with the repatoms. This ensures that the 

exact lattice model is recovered in the fully resolved regions while a smooth transition is 

achieved towards coarse regions in which the method becomes very close to the local QC 

method [1].  

 

 

1. Introduction 

 

The quasicontinuum (QC) method [1] is a multiscale approach that allows efficient atomistic 

calculations. The QC method delivers full atomistic resolution where needed and a coarser 

description where a lower resolution suffices. Moreover, the QC method requires only the 

atomistic model; no equivalent continuum description (as used in combined 

continuum/atomistic approaches) is needed.  

Large-scale atomistic models are computationally demanding because of two reasons. 

First they include many degrees of freedom (DOFs), since every atom represents three DOFs. 

Second, every atom must be visited to determine its potential energy. The QC method reduces 

the large number of DOFs by using interpolation to constrain the displacement of atoms to 

follow a set of representative atoms or repatoms. The triangulation used is adapted in such a 

way that in regions of interest the exact lattice model is captured while in far field regions the 

interpolation domains can be larger so that large number of atoms are interpolated and the 

number of DOFs is reduced (see Fig. 1). 

An equally important ingredient of QC methods is the use of so-called summation 

rules to estimate the total potential energy of the system based on that of a limited number of 

atoms. The atoms used for this purpose are referred to here as sampling points, since they are 

used to sample the energies of the surrounding atoms. The selection of sampling atoms must 

be performed in correspondence with the triangulation to find a good estimate of the 

interpolated lattice’s energy.  

Two general classes of QC methodologies can be distinguished based on the sampling 

used. The local-nonlocal QC method [1] uses the Cauchy-Born rule to determine the potential 

energy of a sampling atom in the coarsened domain, which leads to an internal interface 

between the local domain and the nonlocal (fully resolved) domain. In the cluster QC method 
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[2], clusters of atoms centered at the repatoms are used. However, it is shown in [3] that even 

for large clusters of sampling atoms a poor approximation of the total potential energy is 

obtained. Since in the QC approaches the total potential energy is estimated, an error due to 

summation occurs in the coarsened domain. This is often compensated by using large fully 

resolved domains at the expense of the computational profit. 

In this study the role of summation is examined in detail, leading to two new sampling 

point selections. The first sampling point selection determines the total potential energy 

exactly in correspondence with the triangulation so that no error due to summation occurs and 

the fully resolved regions can remain small. However, since in this case many sampling atoms 

are used the computational burden remains relatively large. For this reason, a second 

sampling point selection is introduced. Although an error due to summation is introduced in 

this second selection, much fewer sampling atoms are used which reduces the computational 

costs. Because the second sampling point selection is based on a clear comprehension of how 

the summation is related to the interpolation, the error due to summation remains small and 

the fully resolved regions only have to be slightly increased to obtain an acceptable error. 

 

 

2. Sampling point selection 

 

The starting point for our discussion is the idealized 2D lattice shown in Fig. 2 over which a 

triangulation is placed. In this idealized lattice only bonds between nearest neighbors are 

present which are modeled as linear springs. To determine the total potential energy of the 

lattice exactly all atoms in Fig. 2 must be visited to determine their site-energy. The site-

energy of an atom is found by projecting half of the potential energies of its eight neighboring 

bonds onto the atom. The site-energy of atom p in Fig. 2 therefore depends on its own 

displacements and on the displacements of its eight neighbors. 

Since linear interpolation is used, all similar bonds inside an interpolation triangle, e.g. 

all horizontal bonds, experience exactly the same relative displacement within one triangle. 

Only bonds between different interpolation triangles may be stretched differently. Therefore, 

the site-energy of atom p in Fig. 2, which has all its neighboring bonds and atoms within the 

same triangle equals the site-energy of its right neighbor p+1 which also has all its neighbors 

in the same triangle as atom p. On the other hand, atom q which has one neighboring atom in 

another triangle may have a different site-energy.  

 

2.1 Exact energy computation 

 

According to the above observation the total potential energy of the entire lattice remains 

exact if, instead of visiting all atoms of the lattice, only one atom with all its neighbors in the 

same triangle is used to represent all other atoms that have all their neighbors in that particular 

triangle. In this case still all atoms that have one or more neighbors in another triangle must 

be accounted for individually. 

To illustrate this sampling point selection, it is used for the aforementioned idealized 

lattice of 250 by 250 unit cells. A zoom of the fully resolved region on the left in Fig. 3 shows 

that bands of discrete sampling atoms occur at the triangle edges while one sampling atom is 

used to represent all other atoms in every triangle. As can be seen in Fig. 3, a large number of 

sampling atoms must be used to determine the total potential energy exactly, which increases 

the computational burden. For a fully resolved region of four by four lattice spacings for 

instance, still 9,809 out of 63,001 atoms must be used for the sampling. If this QC variant is 

used for lattices in which also next-to-nearest neighbor interactions occur, as in atomistic 

lattices, the bands of discrete sampling points become wider and the computational efficiency 

of the sampling method is reduced even more.  
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2.2. Approximate energy computation 

 

For this reason another sampling point selection is introduced that neglects inter-triangular 

interactions in the coarse domain. It uses only one sampling atom per triangle to sample all 

atoms within the triangle, whether or not they have one or more neighbors in another triangle. 

Only the repatoms remain discrete sampling points and they only represent their own site-

energy. As a result also in this sampling point selection one single algorithm can be used to 

deal with coarse and fully resolved regions. In the right picture of Fig. 3 it is clearly visible 

that this sampling point selection leads to a considerable reduction of the number of sampling 

atoms (293 of 63,001). 

 This resulting sampling point selection combines the advantages of the local-nonlocal 

QC method [1] and the cluster QC method [2]. First it uses almost the same, small number of 

sampling points as the local-nonlocal QC method. In fact, in large triangles with many lattice 

points the local QC method is almost recovered since all neighboring atoms of the sampling 

point are located within the same triangle and the contributions of the discrete sampling points 

at triangle nodes are negligible. However, since only physical atoms are selected as in the 

cluster QC method (i.e. the Cauchy-Born rule is not used), no internal interface between the 

fully resolved domain and coarse domain occurs.  

 

 

3. Results 

 

To evaluate the accuracy of the two sampling point selections a multiscale example is 

considered based on the aforementioned idealized lattice of 250 by 250 unit cells as shown in 

Fig. 3. In this example one horizontal bond to the right of the center of the fully resolved 

region is removed. The model is loaded uniformly in horizontal direction; in vertical direction 

the model is free to contract.  

The relative displacement field in Fig. 4 (relative to the case in which the bond is 

present) indicates two distinct peaks at the location of the atoms where the bond is removed. 

This fluctuation field matches the field of the full lattice calculation (without the use of the 

QC method) as shown in Fig. 5. Even for a small fully resolved region of four by four lattice 

spacings the maximum relative error is only 2.3%. This error is entirely due to interpolation 

as the summation is exact for the first sampling point selection. Therefore, the fully resolved 

regions can remain small in this QC approach although the computational burden is large due 

to the large number of sampling atoms. 

The results of the second sampling point selection, indicated by the dashed line in Fig. 

5, are clearly not as accurate as the results of the first sampling selection for small fully 

resolved regions. However, for fully resolved regions larger than six by six lattice spacings 

the maximum relative error is less than 1%, while the computational effort is significantly 

smaller compared to the first sampling point selection - as indicated in the previous section. 

Clearly only a marginal increase of the fully resolved region is necessary for the resulting 

second sampling point selection to obtain a small acceptable error. This originates from a 

clear understanding of the interaction between triangulation and the determination of the total 

potential energy. 

 

 

4. Conclusion 

 

Two new summation methods for QC methodologies have been presented. The first computes 

the total potential energy of an interpolated lattice exactly, but it is costly in terms of 

computing time. A second method uses only the repatoms plus one sampling point within 

each triangle. This method is less expensive and introduces little additional error. 
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5. Figures 

 

 

 
 

 

 

 

 

 

 

Fig. 1: Schematic representation of the two-dimension- Fig. 2: The neighboring atoms of atom p and q are 

al lattice with triangulation. The size of the interpolation visible as open circles. The neighbors of p and p+1 

domains is decreased around the lattice defect so that are located in the same triangle and therefore p and 

the exact lattice model is captured there. p+1 have the same site-energy. Atom q has one 

neighbor in a different triangle and may thus have 

a different site-energy. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3: Zoom of the fully resolved region. Discretely modeled sampling points are indicated by blue crosses and 

the sampling points used to represent the remaining atoms within every triangle are indicated by red circles. 

(Left) the result of the exact summation. (Right) the result of the approximate summation.  

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 4. Relative displacement in horizontal direction due Fig. 5: Maximum relative error of the fluctuation  

to the missing bond for a fully resolved region of six by  at both peaks in Fig. 4. The blue solid line and  

six lattice spacings and exact summation    circles are the errors for exact summation and the 

 red dashed line and squares for the approximate 

summation. 
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Single layer graphene sheets are becoming of increasing interest in nanotechnology. 
It has high mechanical strength, excellent thermal properties and unusual electric 
properties. However, a constitutive characterization of grapheme is lacking. Here we 
develop a constitutive equation for grapheme based density functional theory (DFT) 
calculations. The properties are unusual in that the grapheme is almost isotropic 
until strain of about 10% and then there is a significant deviation from isotropy. A 
hyperelastic constitutive equation that accounts for this transition is developed. This 
constitutive equation is particularly useful for coupled DFT/continuum calculations, 
since the continuum model then closely matches the DFT model, so that the 
disparities in basic properties that result in anomalous behavior at interfaces are 
eliminated. Comparisons are made the DFT/atomistic/continuum model presented 
in [1]. The disparities between strength of grapheme sheets and nanotubes in the 
armchair and zigzag directions are examined along with the effects of existing flaws 
and cracks. Comparisons will also be made with nanoindentation experiments.  
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ABSTRACT

The contribution summarizes results obtained by a computer simulation method employed in

discrete dislocation dynamics. The method has been applied to elementary interactions among

glide dislocations and dipolar dislocation loops. The glide dislocations are represented by para-

metrically described curves moving in glide planes whereas the dipolar loops are treated as rigid

objects. All mutual force interactions are considered in the models. As a consequence, the com-

putational complexity rapidly increases with the number of objects considered. This difficulty is

treated by advanced computational techniques such as suitable accurate numerical methods and

parallel implementation of the algorithms. Therefore the method is able to simulate particular

phenomena of dislocation dynamics which occur in crystalline solids deformed by single slip:

generation of glide dislocations from the Frank-Read source, interaction of glide dislocations

with obstacles, their encounters in channels of the bands, sweeping of dipolar loops by glide

dislocations and a loop clustering.

1. Introduction

Discrete dislocation dynamics (DDD) became a highly efficient tool of exploration of plastic

deformation mechanisms at micro-scale. DDD is used at the same scale as the electron mi-

croscopy. While nearly all electron microscopy observations are carried out on specimens after

deformation, DDD can realistically simulate elementary deformation processes. However, de-

spite a steady progress in DDD methods and ever increasing power of computational resources,

DDD is still far from a possibility to simulate complexity documented by electron micrographs.

Nevertheless, as demonstrated in this article, the current DDD is able to model some dislocation

mechanisms and early stages of dislocation pattering.

Plastic deformation in crystalline solids is carried by dislocations. Theoretical description of

dislocations is widely provided in literature such as1,2. The approach of this article explores ba-

sic dynamic properties of dislocations and dipolar loops and nature of their mutual interactions.

Dislocation is a line defect of the crystalline lattice. Along the dislocation curve the regularity

of the crystallographic arrangement of atoms is disturbed. The dislocation can be represented

by a curve closed inside the crystal (resulting into dipolar loops) or by a curve ending on surface

of the crystal. At low homologous temperatures the dislocations can move only along crystallo-

graphic planes (gliding planes) with the highest density of atoms. The motion results in mutual

slipping of neighboring parts of the crystal along the gliding planes. The slip displacement car-

ried by a single dislocation, called the Burgers vector, is equal to one of the vectors connecting

the neighboring atoms.

A field given by displacement of atoms from their regular crystallographic positions in the
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vicinity of a dislocation curve can be treated as the elastic stress and the strain fields. On the

other hand, a stress field exerts a force on a dislocation. The combination of these two effects

causes the elastic interaction between dislocations.

The discrete dislocation dynamics first treated dislocations as long parallel straight lines. Later

more physical but considerably more complex three-dimensional situations of plastic deforma-

tion processes were investigated. Application of this approach addressed a variety of meso-scale

plasticity problems. Details can be found e.g. in3,4,5.

Methods treating dynamics of curved dislocations can be divided into the following groups.

Some methods consider discrete segments of the curve moving over a discrete grid imitating

crystalline lattice on a larger scale (see3). Other methods discretize the curve into piecewise

linear (see5,6) or piecewise polynomially represented segments (see4).

Due to the above mentioned complexity, formation of dislocation structures as a consequence

of interactions between dislocations is still an open problem. The aim of this contribution is to

summarize description of the parametric model treating several dislocation curves and a dipolar

loops.

2. Parametric approach

Discrete dislocation dynamics is devoted to the study of interactions between one or more dislo-

cation curves and several other defects such as dipolar loops. The mentioned objects are located

in a 3D domain with finite volume. At low-temperature, glide dislocations can be represented

as smooth planar curves. As described in earlier results such as3,7,4,6 and in references therein,

motion of the dislocation curve Γ can be described by the evolution law

BvΓ = −TκΓ + F, (1)

relating its normal velocity vΓ to the curvature κΓ and sum F of forces acting on Γ in the normal

direction. Here, B denotes the drag coefficient and T stands for the line tension.

In general, the law (1) can be treated by methods of the level-set type, of the phase-field type

or by the parametric approach (see5). The last approach is suitable for dislocation dynamics

as such material defects are represented by open curves. Self-intersections as well as other

topological changes can be incorporated to this approach in an algorithmic way.

For this purpose, we introduce notation for quantities related to this representation. A planar

curve Γ(t) evolving during the time interval 〈0, T 〉 can be described parametrically by a smooth

vector mapping ~X : 〈0, T 〉 × 〈0, 1〉 → R
2 depending on time and on parameter u from a fixed

bounded interval 〈0, 1〉. Then, the curve is expressed as

Γ(t) = { ~X(t, u) = [X1(t, u), X2(t, u)] | u ∈ 〈0, 1〉}.

The unit tangential vector to the curve ~T is defined as ~T = ∂u
~X/|∂u

~X|. The unit normal

vector the curve ~N is perpendicular to the tangential vector in selected direction and is denoted

as ~N = ∂u
~X⊥/|∂u

~X|. Substituting corresponding quantities into the law (1) yields the equation

for parametrization ~X = ~X(t, u) in the form (in agreement with8,9)

∂t
~X = T

∂2
uu

~X

|∂u
~X|2

+ F
∂u

~X⊥

|∂u
~X|

, (2)

where the law (1) can be recovered by multiplying the vectorial equation (2) by the vector ~N .
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This equation is accompanied either by the periodic boundary conditions

~X(t, 0) = ~X(t, 1),

for closed dislocation curves (e.g. appearing in the Frank-Read source), or with fixed ends

~X(t, 0) = ~Xfixed,0, ~X(t, 1) = ~Xfixed,1,

for open dislocation curves. The initial condition for the curve position is prescribed as

~X(0, u) = ~Xini(u).

Remark. According to 10, the law (1) can be also treated by the arc-length parametrization

which is a smooth vector mapping ~X = ~X(t, s) depending on time t ∈ (0, T ) and the arc

length s ∈ (0, L(t)) where L(t) is the length of the dislocation curve at a given time t. The

mapping satisfies the identity

∣

∣

∣
∂s

~X(t, s)
∣

∣

∣
= 1. Values of ~X(t, s) are in the glide plane. The

motion law (1) then has the form

B∂t
~X = T∂2

ss
~X + F∂s

~X⊥, (3)

where ∂s
~X⊥ represents the normal vector to Γ(t), accordingly.

The dislocation curves interact dynamically with other material defects such as dipolar loops

through the elastic force field. The interaction dynamics is studied in the coordinate system xyz
where the xz-plane represents the dislocation glide plane. The dipolar loops are considered in

their stable configurations - having long rectangular fixed shapes (see7,6 and references therein).

Therefore their motion can be fully described by motion of their barycenters, at the given level

of approximation. They are assumed to have longer edges parallel with the z-axis whereas their

shorter edges are parallel with either [1, 1, 0] or [1,−1, 0] vectors. This means that a dipolar

loop can move along the x-axis only, keeping the y- and z-coordinates constant. The Burgers

vector is set as~b = [b, 0, 0].

As indicated above, each dipolar loop is assumed to have a rectangular shape and to have one

of the two stable configurations in the atomic lattice depending of the defect type - vacancy

and interstitial configurations. We also assume that dipolar loops have the same size which is

described by the average half-width h, the average half-length l, and the average perimeter P =
2
(

2h
√

2 + 2l
)

. The position of a dipolar loop Λj, j = 1, . . . , N is given by the coordinates
[

x(j), y(j), z(j)
]

of its barycenter. According to the previous assumptions, y(j) = const. 6= 0 and

z(j) = const., whereas x(j) = x(j)(t) is given by the motion law

dx(j)

dt
=

1

BP
F

(j)
x,total

(

Γ, x(1), . . . , x(N)
)

, (4)

where the term F
(j)
x,total is given by the force interaction with other dipolar loops and with the

dislocation curve Γ(t) described by the parametrization ~X . This interaction is projected to the

only possible direction of the loop motion - to the direction of the x-axis.

The interaction dynamics of dislocation curves Γ1, . . . , ΓK parametrized by ~X(1), . . . , ~X(K) and

dipolar loops Λ1, . . . , ΛN discussed in this article is therefore described by the following set of

30



equations endowed by the boundary and initial conditions

∂t
~X(l) = T

∂2
uu

~X(l)

|∂u
~X(l)|2

+ F (t, ~X(1), . . . , ~X(M), Λ1, . . . , ΛN)
∂u

~X(l)
⊥

|∂u
~X(l)|

, l = 1, . . . , K, (5)

~X(l)(t, 0) = ~X(l)
fixed,0,

~X(l)(t, 1) = ~X(l)
fixed,1, l = 1, . . . , K, (6)

~X(l)(0, u) = ~X(l)
ini(u), l = 1, . . . , K (7)

dx(j)

dt
=

1

BP
F

(j)
x,total

(

~X(1), . . . , ~X(K), x(1), . . . , x(N)
)

, (8)

x(j)(0) = x
(j)
ini , j = 1, . . . , N. (9)
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ABSTRACT 

 
The thermodynamic properties of the coherent metastable compounds induced by hydrogen in 

zirconium may strongly influence the formation of stable hydrides, with critical consequences 

on the thermomechanical behaviour of Zircaloy materials used in nuclear industry. While they 

constitute an efficient way towards a better knowledge of these metastable phases, atomic-

scale approaches using ab-initio-based cluster expansions have to take into account the long-

ranged elastic contributions to the H-Zr energetics. This issue is explored here by 

investigating the relation between the so-called “k=0 singularity” of the atomic-scale 

modelling and the macroscopic elastic properties of long-period Zr//Zr2H multilayers. The 

validity of the approach is assessed by direct comparison with ab initio calculations on similar 

structures. Finally, the influence of anharmonic effects, possibly requiring extensions beyond 

linear elasticity, is discussed. 

 

 

1. Introduction 
 

The mechanical behaviour of zirconium alloys used in nuclear industry strongly depends on 

the properties of metastable coherent phases appearing in the early stage of hydride 

precipitation. These properties can be conveniently investigated at the atomic scale using 

cluster expansions, namely configuration energy models of the form: 

 

E = Epoints + Epairs + Etriplets + …    (1) 

 

where « points », « pairs »,… label the different kinds of clusters. This methodology has 

already been successfully used in various cases: metallic alloys, oxides and semi-conductors, 

essentially binary, substitutional systems with cubic symmetry. A severe restriction to its use, 

possibly critical in H-Zr, is due to the existence of elastic interactions, induced by the long-

range deformation and stress fields around interstitial H atoms and entailing a poor 

convergence of relation (1) with the cluster size. Assuming that these long-range effects are 

entirely included in pairs, a convenient way to account for them consists in reformulating the 

pair energy in Fourier space [1], leading to reciprocal-space energy coefficients )(
~

kJ
�

, where 

the wave vector k
�

 belongs to the first Brillouin zone (FBZ). This approach corresponds to 

analyzing an alloy in terms of modulations of composition, in a viewpoint quite similar to that 

of « concentration waves » [2]. The interest of the reciprocal-space formalism relies on its 

capability to take into account pair interactions with arbitrary range, the key-issue then being 

transferred to the achievement of a realistic description of the behaviour of J
~

 within the FBZ. 

Focusing on H-Zr, the context of the present work is thus the improvement of the description 

of )(
~

kJ
�

, the origin of the reciprocal space being characterized by a discontinuity of J
~

 in the 

limit of infinite wavelengths ( 0→k
�

, the so-called « k=0 singularity»). For the case of binary 

AB cubic alloys with monatomic unit cells, it was shown [1] that the behaviour of J
~

 around 

0=k
�

 is directly related to the energetic properties of A//B multilayered structures with period 
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p → ∞, the latter being characterized by their « coherency strain » (also called « constituent 

strain ») energy Ecs. The present work aims at extending these considerations to the case of (i) 

multisite unit cells and (ii) lower hexagonal/trigonal symmetry, in order to enable application 

of cluster expansions to the hexagonal H-Zr system. 
 

 

2. Coherency strain energy of H-Zr multilayers: methodology 
 

In this context, our aim for H-Zr will be the determination of the energy Ecs of any 

coherent α//β multilayered structure of direction k
�

, period p → ∞ and proportion x of α unit 

cells. It should be noted that the multisite unit cell of H-Zr implies the existence of several 

variants for the occupation of sites by H, an issue irrelevant and thus ignored for all AB alloys 

investigated hitherto. In the p → ∞ limit, the relative contribution of the α/β interface 

becomes negligible, as well as the elastic inhomogeneities within each phase, which fully 

justifies the treatment by means of continuous elasticity. Moreover, although this assumption 

may be criticized in some cases [3], it seems reasonable to tackle the problem under the 

simplifying harmonic assumption of an elastic energy quadratic with respect to deformations. 

Due to the choice of α and β structures in this work and the crystalline systems they belong 

to, the relevant elastic energy density ω of each phase, in the ([2-1-10],[01-10],[0001]) 

referential, is expressed as: 

 

[ ] [ ] [ ]
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If α belongs to the hexagonal crystalline system, C14 = 0. In this work, ω thus involves at 

most 6 elastic constants. 

 

The procedure to calculate Ecs consists in two steps similar to those exposed in [1]: 

(i) For each phase α and β considered separately, a deformation field is imposed in the 

interface plane defined by its normal k
�

. The structure is then relaxed in the direction parallel 

to k
�

. Although the deformation resulting from this relaxation generally depends on the 

symmetry, it is reasonable to assume that it reduces to an elongation along the direction 

normal to the interface. 

(ii) An epitaxy condition within the α/β interface plane is applied and an energy minimisation 

procedure allows calculating the deformations inside the interface plane. It should be noted 

that the isotropic approximation for in-plane deformation (ε11= ε22 and ε12= 0), acceptable in 

the cubic case and thus admitted throughout in the literature, proved to be invalid in 

trigonal/hexagonal symmetry, implying to handle a more general case, formally more 

complex (ε11 ≠ ε22 and ε12 ≠ 0). 

 
Since the quantity Ecs depends on the elastic constants of both phases in the multilayer, a 

preliminary step consists in calculating these parameters. To this end, we employed ab initio 

calculations (density functional theory with plane waves and pseudopotentials, as 

implemented in the VASP software [4,5]), in conditions identical to those of a previous study 

of H-Zr [6]. These elastic constants can be determined only numerically, since the elastic 

properties of the metastable H-Zr phases considered cannot be experimentally measured. Fig. 

1 displays the influence of the composition xH on the elastic constants of various Zr-H 

structures. Although some constants (in particular C13) are hardly sensitive to xH, the trend is 

an increase with the H amount. With stronger variations for xH>1/2, the general shape recalls 

that of T = 0 K energy-composition curves (ground-state properties of H-Zr [6]): two 

composition domains are separated by the ZrH compound. Several values are reported on Fig. 
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1 for xH = 1/2, corresponding to the three configurational variants of ZrH. Note that the 

dispersion between these variants may be significant (50 GPa). 
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Figure 1. Elastic constants in H-Zr, as obtained from ab initio calculations. 

 

 

3. Long-period multilayers in H-Zr 
 

The previous elasticity data allow to evaluate the coherency strain energy of various 

multilayered structures in H-Zr. The methodology is illustrated on the case Zr(α)//Zr2H(ζ) : 

obtaining Ecs for this structure is a priori of first importance, in reason of its recent 

experimental observation [7]. Prior to any application to cluster expansions, the validity of the 

calculation of Ecs is tested. To this end, we performed a series of « direct » ab initio 

assessments of Zr(α)//Zr2H(ζ) multilayer energies (noted E(Zr//Zr2H)) with different periods 

for the basal *
c
�

 and prismatic *
a
�

 orientations and x = 1/2. The energy per cell ∆E reported on 

Fig.2 is defined as: 

 

∆E = E(Zr//Zr2H)/p – xE
eq

(Zr) – (1-x)E
eq

(Zr2H)   (3) 

 

E
eq

(Zr) and E
eq

(Zr2H) corresponding respectively to the energies per unit cell of pure Zr and 

Zr2H taken at their own unconstrained equilibrium lattice parameters. Ecs theoretically 

corresponds to the asymptotic limit of ∆E when p → ∞. Fig. 2, which displays the results, 

reveals a behaviour sensitive to the direction of the multilayer. Whereas for prismatic 

orientation the agreement is reasonable (asymptotic behaviour), the situation is less clear for 
*

c
�

, with a surprisingly non-linear increase of the energy with p. This behaviour is probably 

due to an insufficient period for the multilayers involved in the ab initio calculations (the two-

cell period of ζ along the c
�

 axis being possibly related to long-range composition fluctuations 

ill-captured in supercells of limited size). The other possibilities, namely (i) a significant 

anharmonicity and (ii) the presence of structural instabilities, should merely be responsible for 

an offset of the ab initio asymptote with respect to the elastic prediction, the asymptotic 

profile remaining of general validity. On the whole, even though the periods considered for ab 

initio calculations remain quite short, the elasticity / ab initio confrontation for α//ζ confirms 

the validity of the above scheme for the determination of coherency strain energies in H-Zr. 

The hypotheses underlying this model thus seem justified, in particular the harmonic 

approximation and zero shears perpendicular to the interface plane. 
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Basal αααα//ζζζζ multilayers
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Prismatic αααα//ζζζζ multilayers
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Figure 2. Energy (eV/unit cell) of basal and prismatic Zr(α)//Zr2H(ζ) multilayers: 

comparison between ab initio and elasticity calculations. 

 

 

4. Conclusion 
 

The present work, devoted to a « multiscale » study of multilayers built from Zr-H 

compounds, allowed to get better insight into the relation between the energetics (accessible 

to ab initio calculations) of short-period multilayers and that (determined via elasticity) for the 

limiting case of an infinite period. The comparison of both approaches for the α//ζ multilayers 

seems to confirm the validity of the present extension of the « coherency strain » model to the 

trigonal/hexagonal case, including important generalizations of the formulation presented in 

the literature concerning (i) the interfacial deformation, (ii) the epitaxial condition and (iii) the 

handling of multisite unit cells and various site occupancies. 
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ABSTRACT 
 

Comparison of two models for simulation of solidification of binary mixtures was performed. 

The first model is based on continuum formulation (CF) whereas in the second a growth 

kinetic of dendrites is taken into account “in average” using a multiphase multiscale Eulerian 

approach (MMA). For CF similar results for segregation were obtained with two numerical 

models, realised in software Fluent and GIGAN. In both cases formation of elongated narrow 

regions enriched and impoverished with the solute was revealed. Simulations performed in 

Fluent with application of a MMA gave a macrosegregation pattern similar to that obtained 

with CF whereas appearance of mesosegregation was found dependent on mass transport 

coefficient within a dendritic grain. 

 

1. Introduction 
 

Non-uniform distribution of solute is a usual phenomenon in solidification of alloys and can 

be observed at the scale of the whole ingot (macrosegregation) or locally as freckles or 

channels (mesosegregation) [1]. It is the result of action of two factors: different solubility of 

the components in the solid and liquid phases and relative movement of these phases during 

solidification. An experiment performed in chill configuration [2] demonstrated segregation 

which appeared due to buoyancy-induced flow in the liquid. Data obtained in [2] were used 

by many authors for validations of physical models and their numerical realisations, see 

[3], [4] and references within. Difficulties in simulation of solidification problems arise due to 

coupling of processes which occur at different scales: at the solid/liquid interface, between 

dendritic arms and in the bulk volume of liquid. To take them into account, averaging-based 

techniques are applied to local conservation equations for obtaining macroscopic equations. 

An approach which is referred here as a continuum formulation (CF) initially was formulated 

using the mixture theory [5] and later re-formulated using volume averaging procedure [6]. 

Other models which accounted for growth kinetics of dendrites are multiphase volume 

averaging model [7] and multiphase multiscale approach (MMA) based on statistical 

averaging [8]. In the present work simulations of a numerical benchmark problem stated in 

[9] for solidification of PbwtSn −− %10 has been done. The first aim was comparison of 

results obtained within the frame of CF using two different numerical techniques realized in 

software Fluent and GIGAN [10]. The second objective was comparison of results obtained 

with different physical models, namely with CF and MMA. 

 

2. Statement of the problem and physical models 

 

The simulations are performed for a 2D rectangular domain cm610×  whose short sides are 

parallel to the gravity vector. Initially completely melted and stationary alloy  of SnPb
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nominal lead concentration ( ) wtPbCl %100, =  has uniform temperature  corresponding to 

the liquidus one. The top and the bottom walls of the domain are thermally insulated, 

solidification occurs due to heat extract at lateral walls. Physical properties are omitted here 

and can be found in [9] with more detailed description of the problem.  

0T

 

2.1 Continuum formulation and multiscale multiphase approach 

 

In CF evolution of two phases, solid and liquid (indices  and , respectively), are considered 

The solid phase is stationary throughout the process, density 

s l

ρ , specific heat and thermal 

conductivity  are constant and equal for both phases. Modelling of the process requires 

solution of mass, energy and solute conservation equations which are given below 
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In Eqn.1-2 lε and sε - volume fractions of liquid and solid phases ( 1=+ sl εε ), lv  – intrinsic 

velocity of liquid and ll= vV ε , μ  - viscosity, p  - pressure, ρ~  is defined by Boussinesq 

relation, K  is a permeability which is defined by secondary dendritic arm spacing [9]. In 

Eqn.3 T  is temperature, ( ) LTTc=h lep ε+−  is the enthalpy in the mushy zone,  is latent 

heat and  is eutectic temperature. In Eqn.4 

L

eT ssll CCC εε +=  is averaged concentration, 

lC  and ls Ck=C 0 – are solute concentrations in liquid and solid, respectively, 0k  is a 

segregation coefficient, ll DD ε= is solute diffusion coefficient in the liquid, while no 

diffusion in solid phase. In the mushy zone solid and liquid phases are in chemical 

equilibrium, and linearized phase diagram is used, i.e.  lmliq mCTT += , where liqT  is liquidus 

temperature, m  is liquidus slope, and mT  is melting temperature of pure substance.  

 

In a multiphase multiscale Eulerian approach in addition to the solid and liquid phases, the 

third phase for the interdendritic liquid which is enclosed within dendritic arms is introduced 

[7], [12]. Chemical equilibrium between solid and liquid phases is assumed only for 

interdendritic liquid. Concentration of solute in extradendritic liquid is defined by diffusion of 

solute from interdendritic liquid as well as by its convective transfer through the liquid phase. 

Evolution of the envelope is governed by Ivantsov equation numerically approximated in [7]. 

Complete set of equations for MMA is omitted here for the sake of brevity can be found in 

[8]. It is necessary to underline that the main difference between the two models presented 

here lies in different treatment of phase transition from liquid to solid.  

 

2.2 Numerical realizations 

 

In Fluent Eqn.1-4 for continuum formulation are disretized over the space with finite volume 

method and implicit time scheme is used. For calculation of mass fluxes at the boundaries of 
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control volumes the second order upwind scheme is used. Note that in the benchmark 

statement  but in both software it was taken as a small value. 0=lD

 

In GIGAN for approximation of Eqn.1-4 an exponential method [10] in conjunction with 

Patankar-Spalding technique [11] and implicit time scheme are used. Obtained system of 

nonlinear finite-difference equations is linearized and implicit relaxation method is applied 

for its resolution [10]. The system of finite-difference equations is solved by the iterative 

method of incomplete factorization.  

 

3. Results and discussion 
 

3.1 Results obtained with continuum formulation 

 

In Fig.1a and Fig.1b results obtained in Fluent and GIGAN with grid of 240x200 and 

120x100 cells, respectively, are presented. In solidification of PbwtSn −− %10  a heavier 

solute is rejected that causes downward flow within a mushy zone which spread from a 

cooled walls and, respectively, appearance of upward flow in pure liquid. This leads to 

impoverishment in  at upper part of the ingot and accumulation of the lead in form of a 

hill in the central part of the domain.  

Pb

 

 
Fig.1. Distribution of average concentration of  relatively to nominal one

 
 after 120 s 

of solidifications obtained within CF with (a) Fluent and (b) GIGAN. Because of symmetry, a 

half of the domain is presented and vertical axis corresponds to the centre of the domain. 

Pb 0,LC

 

Apart from macrosegregation which was found similar in both simulations formation of 

alternating elongated narrow regions impoverished and enriched with  has been revealed. 

These regions originate due to local instabilities inside the mushy zone. In simulations 

performed with Fluent the number of these zones is larger than in GIGAN and variation of 

lead concentration there is significantly stronger. Similar effect of space discretization based 

on control volume compared to finite element was found in [5].  

Pb

 

3.2 Results obtained with multiscale multiphase approach 

 

Simulations were performed for several values of mass transfer coefficient   inside a 

dendritic grain, whereas in pure liquid diffusion was not taken into account. A smaller 

diffusion coefficient corresponds to slower diffusion of solute from interdendritic liquid, to 

extradendritic one and, therefore, to less intensive enrichment of the bulk liquid with a solute. 

With  m
2
/s (typical value for metals) resulting macrosegregation pattern is 

ilD ,

9

, 100.3 −⋅=ilD
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similar to that obtained in previous simulations, whereas local variations of concentrations of 

do not exist (Fig.2a). With increasing of  by an order, up to  m
2
/s one 

of the channels observed earlier appears. The next value taken in simulations 

 
is hardly realistic, however, it can be interpreted as an “effective” 

diffusion coefficient which takes into account convective mass transfer near the dendritic tip. 

Pb
ilD ,
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, 100.3 −⋅=ilD

smD il /100.3 27

,

−⋅=

 

 
Fig.2. Distribution of average concentration of  relatively to nominal 

 
after 120 s of 

cooling obtained with MMA in Fluent for (a), (b) and 

(c). A half of the domain is shown; vertical axis corresponds to its centre. 
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3. Conclusions 

 
Simulation performed with two numerical realisations of a physical model based on 

continuum approach as well as simulation based on multiphase multiscale approach provided 

similar macrosegregation patterns in chill casting of Sn10%wtPb. The effect of molecular 

diffusion within a dendritic grain is put forth in MMA. Increasing diffusion promotes the 

channel formation along with macrosegregation. 
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In this study, we propose to model dislocation core in SrTiO3 using the recently 
developped Peierls-Nabarro-Galerkin approach (Denoual C., PRB 70, 024106 
(2004)). To that purpose, Generalysed Stacking Fault (GSF) of {100} and {110} 
planes have been calculated ab initio using the VASP package. Inelastic Stacking 
Fault energy derived from GSF calculations are then introduced in the PNG 
method to determine stable core structure of <110> dislocation (both screw and 
edge component are calculated).  
 
The <110> screw dislocation core is planar in {110} with a core spreading larger 
than two lattice repeats. Such a wide core can be considered as a dissociation of a 
<110> dislocation into two collinear partials dislocations of !<110> Burgers 
vectors in agreement with experimental observations (Castillo-Rodriguez M. and 
Sigle W., Scripta Mat. 62, 270-273, (2010)). Besides providing a core model, PNG 
calculations can be used to evaluate Peierls stresses, found for <110>{110} screw 
dislocation between 200 and 300 MPa.  
 
Same calculations are currently performed on the edge component. For the 
<110>{110} edge dislocation, calculations lead to a wider core characterized by a 
lower Peierls stress.  
 
The final step of this study corresponds to a critical shear stress calculation at low 
temperature based on a double kink nucleation process. The nucleation energy of 
kink pairs have been calculated using an elastic interaction model (Koizumi et al., 
Acta Metall. Mater., 41, 3483-3493, (1993)). Preliminary results show that the kink 
pair nucleation theory is able to reproduce the main features of critical resolved 
shear stress in {110} at low temperature.  
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Neutron irradiation enhances mass transport in compounds via creation of point 
defects, thereby accelerating possible phase changes, which in turn result in material 
property changes. The development of predictive tools capable to model the kinetics 
of such processes is thus of great importance for the nuclear sector. This is a 
delicate issue, since it requires the accurate estimation of the mobility of defects 
redistributing atoms in a chemically complex system undergoing phase 
transformation. 
 
 The method we propose [1] uses a classical atomistic kinetic Monte Carlo 
(AKMC) paradigm. The migration energy barrier of diffusing point defects (i.e. 
vacancies or self-interstitials) is calculated with only a few approximations using the 
nudged elastic band method, as a function of the distribution of surrounding chemical 
species and other nearby defects. The only required physical input is a reliable inter-
atomic potential for the alloy of concern. As the use of on-the-fly calculated barriers 
would be unfeasible in practice, an artificial neural network (ANN) is used instead, as 
a mathematical regression tool, trained on a set of calculated examples. The ANN 
input are on-site variables describing the migrating defect’s neighbourhood. 
 
 This ANN-based approach has been successfully applied to the case of a 
single vacancy migrating in an alloy, i.e. with a changing chemical environment, for 
AKMC simulations of thermal annealing [1]. The generalisation of this method for the 
simulation of neutron irradiation damage, requires that the existence and formation of 
vacancy and self-interstitial atom clusters is accounted for. In this work, we take a 
few steps in this direction, by considering the problem of the formation of clusters of 
vacancies. We find that, in order to model with the proper energy barriers all diffusion 
events, it is necessary to include in the model the capability of dealing with 
spontaneous migration events that in some cases may involve more than one single 
migrating atom at a time and may include diffusion jumps to distances larger than 
first nearest neighbours. 
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Understanding size effects evidenced experimentally in various situations has 
become one of the hottest issues of the last few years. Many models have been 
developed to reproduce these size effects. Some are based on generalized 
continuum mechanics, such as field dislocation mechanics (FDM) [1] and strain 
gradient plasticity (SGP) [2], and others are directly dealing with dislocations such 
as discrete dislocation dynamics (DDD) [3]. Generalized continuum mechanics are 
based on, or related to, geometrically necessary dislocations (GND) and intrinsic 
length scale concept. In such models, the connection to physical background 
remains purely phenomenological. On the other hand, DDD can make bridge from 
the physical origin to the continuum models since it gives access both to GND 
quantities and to the intrinsic lengths. As an example, Figure shows a typical 
dislocation microstructure obtained from DDD simulation. 
In this paper, size dependent mechanical responses, such as hardening, 
dislocation density distributions and amount of plastic slip due to the back-stress 
induced by pile-up dislocations are investigated using DDD, SGP and FDM. In 
DDD, the distance between the nearest slip planes in a multilayer pile-up structure 
is set as the intrinsic length that strongly affects the size dependent mechanical 
responses. The continuum models are found to be able to reproduce the results 
obtained by DDD including size effects. In particular, a full correspondence has 
been obtained between SGP and DDD: the mechanical responses are affected by 
intrinsic length, slip system orientation and multislip activations. 

 

Figure Typical dislocation structure developed in confined geometry  
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Current ferroelectric devices, such as in thin-films, are fabricated with complex 
geometries and are subject to complex electromechanical loads.  In these 
situations, spatially-varying long-range electric fields are present throughout the 
device as well as outside in free space.  As the electric fields play a critical role in 
the functionality of devices, it is important to resolve them accurately. 
 
Typical periodic boundary conditions are inadequate for the complex situations 
described above.  We have developed accurate and efficient real-space methods 
to address these situations.  In particular, through the application of Dirichlet-to-
Neumann maps using Boundary Elements, we transform the problem from solving 
over all of space for the stray electric fields to a consistent local problem only over 
the region of interest.  This enables vast savings and provides a multiscale 
scheme to focus the computational effort in regions of interest while being 
consistent with far-field conditions. 
 
We shall present the method and related computational techniques related to 
Boundary Elements.  We have coupled our multiscale electrostatic solver to 
material descriptions at two different scales, first a phase-field mode and second 
an atomistic multiscale (quasicontinuum) model.  We shall describe our 
implementation of the coupling of the electrostatics to these descriptions, and 
present results of our computations to problems such as free-surface 
microstructure in ferroelectrics, response of ferroelectric thin-films to electrodes 
and piezo-force microscopy, and the electromechanics of crack tips. 
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Recent research in atomistic-to-continuum coupling and in particular in the 
Quasicontinuum (QC) method has shown a strong interest in numerical quadrature 
because it largely determines the methods accuracy and efficiency, [1]-[5]. 
Mathematical analyses of quadrature schemes often restrict to the 1-D case of 
atomic chain models, to simple pair potentials and to additional ad-hoc 
assumptions. These simplifications make the problem tractable by analytical 
means or alleviate numerical analysis. Doing this, mathematics has brought new 
insights into concurrent multiscale modelling. However, it is not clear, whether the 
obtained results and conclusions of such analyses can be transferred to problems 
without these simplifying assumptions. 
 
The main aim of the present contribution is the numerical analysis of different 
quadrature rules within the QC method in a more realistic physical setting, namely 
in 3-D applying EAM-potentials in paradigmatic multiscale settings of 
computational materials science. In particular, we compare the method proposed 
in [4] with the cluster-based summation rule as proposed  in [1] and analyzed in 
[2]-[5].  The quadrature schemes are assessed in representative numerical 
examples like nanoindentation which showcase the influence of numerical features 
like numerical quadrature and (adaptive) meshing on reliable predictions of key 
materials and process information. 
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The unusual properties of shape memory alloys (SMAs) are due to solid-to-solid 
martensitic phase transformations (MPTs) that correspond to a lattice level 
instability of the material’s crystal structure. The high temperature phase, which is 
often entropically stabilized, is usually a high symmetry structure and is called the 
austenite phase whereas the low temperature phase has low symmetry and is 
called the martensite phase. Currently, there exists a shortage of material models 
for MPTs based on the material's atomic composition and crystal structure. The 
present work develops a model using a first-order self-consistent lattice dynamics 
approach that aims to capture the qualitative and ultimately quantitative behavior 
of MPTs. In this approach, a renormalization of the frequencies of atomic vibration 
(phonons) via a set of self-consistent equations allows the model to accurately 
capture how atomic vibrations affect the thermomechanical properties of the 
material. These renormalized phonon frequencies are dependent on both 
crystalline configuration and temperature. 
 
For illustrative purposes, the model is applied to a one-dimensional bi-atomic 
chain. The Morse pair potential is selected to describe atomic interactions and 
parameters are chosen to demonstrate the model’s capabilities. The model is 
evaluated by generating bifurcation diagrams corresponding to thermal and 
mechanical loading.  These diagrams consist of equilibrium paths as a function of 
the loading parameter (temperature or stress). The paths are generated using 
branch-following and bifurcation techniques. A first-order MPT is predicted which 
involves transformation from an entropically stabilized high symmetry phase to a 
low symmetry phase as the temperature is decreased.  It is found that the MPT 
can be both temperature-induced and stress-induced.  Both types of MPT are 
required in order for a material to exhibit the full range of typical SMA behavior. 
 
The qualitative prediction of a temperature- and stress-induced MPT indicates the 
likely hood that the current model can be used for the computational discovery of 
new SMAs. Such an undertaking would involve, first, obtaining an accurate set of 
interatomic potentials for the alloy system of interest and, second, using these 
potentials with the current self-consistent model to evaluate the shape memory 
behavior of the previously unstudied materials. 
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ABSTRACT

In adaptive multiscale simulation, particles automatically adapt their resolution when they move

from the atomistic region to the coarse-grained surrounding or vice versa. The latter process

entails the smooth insertion of the extra atomistic degrees of freedom onto the coarse-grain

particles, which is prone to problematic atom-atom overlaps. Here we show that this so-called

reverse mapping problem is significantly reduced by smoothly capping the repulsive part of

the atomistic pair-interactions to a maximum absolute force. Not surprisingly, capping the

interactions at too low a force affects the properties of the system, firstly seen in the pressure

and the diffusion coefficient. Good results are obtained for forces capped between 104 and

108 K/Å.

1. Introduction

Hybrid atomistic/coarse-grain molecular dynamics simulation1,2,3, or hybrid MD for short, is a

relatively new method to model soft matter systems that exhibit an intrinsic multiscale character.

Examples of such systems are polymers and bio-molecular assemblies, such as lipid membranes

and proteins. These materials display interesting phenomena that take place on time and length

scales that are too large to model by brute force molecular dynamics simulation in full atomistic

detail. Instead, mesoscopic coarse-grain models have been developed, in which each particle

typically represents a chemical group of several atoms, to model systems of micrometer and mi-

crosecond length and time scales, however at the cost of losing the atomistic details4,5,6. Hybrid

MD simulation aims to link the mesoscale phenomena to the underlying atomistic motions, by

focusing locally in atomistic detail while treating the environment of the atomistic region at the

computationally less demanding coarse-grain representation.

A key feature of a multiscale modeling method is its ability to bridge between the different

molecular representations7,8. A hybrid MD simulation of a fluidic system requires, in the first

place, a proper coupling between the particles in the atomistic region and those in the coarse-

grained environment, and secondly, a mechanism to switch between the two representations

of particles that diffuse from one region to the other. Especially the on-the-fly switching from

a low-resolution coarse-grain representation to the high-resolution atomistic representation is

fraught with difficulty. There is not a unique solution to re-insert the atoms into a coarse-

grained particle, such that the inserted degrees of freedom are in thermal equilibrium with their

surrounding.

We have recently developed a hybrid MD method that combines two so-called reverse map-

ping techniques to smoothly map the atoms onto a coarse-grained molecule when it enters the

high-resolution region9. In the first place, a special “healing region” is introduced in between

the high and low resolution regions, in which particles gradually adapt their representation by

smoothly scaling their interaction potentials2. Although this approach was shown to work well
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for relatively simple liquids that consist of molecules that can be represented by a single coarse-

grained bead, such as liquid methane, a second reverse mapping technique is required to model

molecules that consist of two or more connected coarse-grained beads. The problem with con-

nected beads is that a proper orientation of the atomic fragments with respect to that of the

molecular frame is essential to allow for a smooth insertion of the atoms when in the healing re-

gion. By preconditioning the orientations of the atomistic fragments through an auxiliary rigid

body rotation dynamics in the low-resolution region, hybrid MD of interesting macromolecular

soft matter systems has become possible9.

In the present work, we investigate an additional technique to improve the reverse mapping

in hybrid MD simulation: capping of the repulsive part of the atomistic pair-potentials. Typ-

ical pair-potentials, such as the Lennard-Jones potential or the Buckingham potential describe

the repulsive interaction that two closed-shell atoms feel at short distance due to the electronic

Pauli exchange repulsion with a steep inverse twelfth power function or an exponential func-

tion respectively. At inter-atomic distances very close to zero the forces on the atoms become

extremely large (so-called atom overlaps), which can cause havoc for the molecular dynamics

integrator. Under normal, not too extreme temperature and pressure, conditions this does not

happen in practice in atomistic equilibrium simulations. However, reverse mapping atomistic

details into a coarse-grained molecule is not an equilibrium process and very short inter-atomic

distances may occur due to the relatively soft nature of the coarse-grain beads.

Especially when the level of coarse-graining is high, that is, when a coarse-grain bead represents

many atoms, and also when the underlying atomistic fragment structure is highly anisotropic,

catastrophic overlaps may occur when the atomistic details are inserted into coarse-grain par-

ticles that move through the healing region toward the high-resolution region. Enlarging the

healing region so that particles move on a longer transition path and thus switch resolution more

gradually reduces the probability of overlaps. It is however computationally advantageous to

keep the healing region as thin as possible. As an alternative, we consider here to cap the re-

pulsive part of the pair-potential at very short distances. Anticipating our results, we find that

such capping improves the reverse mapping, as indicated by better total energy conservation in

hybrid MD simulation of liquid hexane, and that the capping does not affect the structural and

dynamical properties of the system, unless the capping is done at too low values of the forces.

2. Methods

2.1 Pair-potential capping

The purpose of capping the atomistic pair-interactions is to avoid too large forces at atom-

atom distances close to zero, which configurations can occur when atoms are gradually inserted

into the coarse-grained particles during a hybrid MD simulation. The capped potentials are

constructed starting from the standard 12-6 Lennard-Jones pair-potential:

V LJ(r) = 4ǫ

[(

σ

r

)12

−
(

σ

r

)6]

, (1)

where r is the distance between the atoms, ǫ is the depth of the the potential well, and σ is

the distance where the inter-particle potential is zero. At distances shorter than σ the first term

dominates, which governs the steep r−12 repulsive wall.

In order to set a maximum allowed absolute force, Fmax, at inter-particle distances shorter than
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Figure 1: Comparison of the capped tabulated potential (dashed line) and force (solid line) with

the original Lennard-Jones functions (dotted lines). The force is capped to −10−6 K/Å, which

results in a linear potential at short distances. The inset zooms in on the potential well.

a cutoff rcut, the force of the capped interaction is taken to be:

F capped =

{

Fmax if r < rcut

−w(r) ∗ dV LJ(r)
dr

if r ≥ rcut
(2)

in which w(r) is,

w(r) =
1 − ( rswitch

r
)26

1 − ( rswitch

r
)52

, (3)

a function that switches smoothly from 0 to 1 in the neighborhood of the distance rswitch. The

cutoff distance, rcut, is found by moving the position of the switch function, rswitch, in an iter-

ative procedure such that the target maximum absolute force, Fmax is set at rcut. The potential

belonging to this function for the force is obtained by integration. The potentials and forces

are input to the MD program as tabulated functions on a grid of 4000 points between r = 0
and the interaction cutoff distance of 10 Å. Fig. 1 shows an example capped force and potential

compared to the original Lennard-Jones potential for a carbon-carbon interaction.

2.2 Hybrid molecular dynamics

The hybrid atomistic/coarse-grain molecular dynamics simulations are performed using the al-

gorithm presented in Refs.2,9. In brief, the entire molecular system is simultaneously repre-

sented in both the atomistic and the coarse-grained detail. The system is spatially partitioned in

a high-resolution region with a surrounding healing region in which the atoms are propagated
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and a low-resolution region in which the coarse-grained particles are evolved. In both regions,

the coordinates of the inactive representation are updated by matching the centers of mass of

the particles every time step. In addition, in the low-resolution region the orientation of the in-

active, frozen, atomistic fragments are evolved using an auxiliary rigid body rotation dynamics,

governed by a reduced energy function of selected atomistic intra-molecular potentials10.

The coupling between atoms and coarse-grain particles, as well as the switching between rep-

resentations in the healing region is governed by a hybrid potential,

V A/CG =
∑

αβ

(

λαβΦCG
αβ + (1 − λαβ)

∑

i∈α

j∈β

ΦA
ij

)

, (4)

which sums over all pairs of coarse-grain particles α and β and mixes the course-grain pair-

interaction, ΦCG, with the sum of atomistic pair-interactions, ΦA, of atoms i grouped in α and

atoms j grouped in β, using a scaling function λ ∈ [0, 1] that depends on the particle positions.

Further details on the hybrid MD method are found in Ref.2.

3. Results

3.1 Effect of capping on structural and dynamical properties

To assess the effect of capped pair-interactions on the properties of the system, we performed a

series of fully atomistic MD simulations of liquid hexane, in which the Lennard-Jones potentials

were capped to maximum forces of 600, 103, 104, 106, 108, and ∞ K/Å. To this end, 250 hexane

molecules were simulated in a cubic box subject to periodic boundary conditions in the NVT

ensemble. A temperature of T = 303.15 K was maintained using the Nosé-Hoover chain

thermostat. The CHARMM11 force-field was used and adapted by capping the Vanderwaals

interactions. The simulations were performed using our in house CM3D molecular dynamics

program.

The following properties were computed: the average pressure, the carbon-carbon and carbon-

hydrogen radial distribution functions, the carbon and hydrogen velocity auto-correlation func-

tions (from which the infrared spectrum was computed), and the carbon mean-square displace-

ment, from which the self-diffusion coefficient was obtained. In Fig. 2 is shown that the radial

distribution functions (top panel) and vibration spectra (middle panel) are indistinguishable with

respect to the different capped potentials. However, the capping has a noticeable effect on the

mean square displacement (bottom panel), the diffusion, D, and the pressure P (see Tab. 1) for

capping values lower than Fmax = 104 K/Å.

3.2 Effect of capping on reverse mapping in hybrid MD

To test the effect of using capped potentials on the reverse mapping in a hybrid MD simulation,

we performed multiscale simulations of hexane using the previous series of capped atomistic

pair-potentials. The hybrid system contained 1900 hexane molecules in a rectangular box with

dimensions close to 60 x 60 x 120 Å using periodic boundary conditions. The atomistic region

was chosen to be a 2D slab with a width of 24 Å flanked on both sides by a healing region

with a width of 5 Å. At the coarse-grained level, hexane was modeled using the forcefield of

Nielsen et at, in which each molecule is modeled by two beads (representing C3H7) bonded with
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Table 1: The self-diffusion coefficient, D, obtained from the slope of the mean square displace-

ment, and the average pressure, P , computed using interactions capped at different absolute

maximum forces, Fmax.

Fmax [k/Å] D [10−5 cm2/s] P [atm]

600 5.4 -0.38

103 4.7 0.27

104 3.9 1.7

106 4.0 1.7

108 3.7 1.6

∞ 4.0 1.7
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Figure 2: Structural and dynamical properties of liquid hexane modeled with Vanderwaals in-

teractions capped at a maximum force of 600, 103, 104, 106, 108, and infinite (i.e. normal

Lennard-Jones)
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a harmonic spring and interacting through 9-6 Lennard-Jones pair-potentials12. To assess the

performance of the reverse-mapping, we monitor the hybrid total energy, which is very sensitive

to the accuracy of the integration of the equations of motion. This hybrid total energy is not a

physical property, but rather an auxiliary conserved quantity that allows for quality control.

Fig. 3 shows this total energy for 200 ps hybrid MD simulations using the potentials capped at

106 and 108 K/Å respectively, as well as the original Lennard-Jones potentials. Clearly, the total

energy is not properly conserved, and shows jumps due to atom-overlaps in the healing region

using the (uncapped) Lennard-Jones potentials, and a healing region width of 5 Å. The simu-

lations using the capped potentials show very good energy conservation, indicating a smooth

switching of resolution of hexane molecules. Capping at 106 K/Å shows slightly better perfor-

mance than capping at 108 K/Å, and further improvement may be reached by capping at even

lower absolute forces, but that may affect the dynamics of the system as was shown above.
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Figure 3: Hybrid total energy conservation from three different multiscale simulations of liquid

hexane using pair-interaction capped at a maximum force of 106, 108, and infinite (i.e. normal

Lennard-Jones).

Conclusion

We have investigated the effect of capping the repulsive part of the Lennard-Jones pair-potentials

on structural and dynamical properties for the benefit of improving the reverse mapping of

atomic fragments onto coarse-grained particles in hybrid MD simulation. Capping the inter-

actions to a too small maximum absolute force (smaller than 104 K/Å in our bulk hexane cal-

culations) is, perhaps not surprisingly, first seen to affect the pressure and the self-diffusion.

Nevertheless, capping at larger values still has a positive effect on the reverse-mapping in hy-

brid atomistic/coarse-grain simulations, as seen from the conservation of the total energy. This

is because accidental overlaps between atoms when they are inserted onto the coarse-grained

particles do no longer cause extremely large repulsive forces that disrupt the MD integration.
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Quantum-mechanical calculations are becoming increasingly useful to engineers 
interested in designing new alloys because these calculations are able to 
accurately predict basic material properties only knowing the atomic composition 
of the material. In this paper, fundamental physical properties (formation energies, 
elastic constants) of a dense set of bcc Mg-Li compounds are calculated using 
density-functional theory (DFT) and compared with experimental data. These DFT-
determined properties are in turn used to calculate engineering parameters like (i) 
specific Young’s modulus (Y/ȡ) or (ii) bulk over shear modulus ratio (B/G) as an 
approximative indicator of either brittle or ductile behavior. The engineering 
parameters are then used to identify alloys that have optimal mechanical 
properties for light weight applications. An Ashby map containing Y/ȡ vs. B/G 
shows that it is not possible to increase both Y/ȡ and B/G by changing only the 
composition or local order of a binary alloy (W. A. Counts, M. Friák, D. Raabe, and 
J. Neugebauer, Acta Mater 57 (2009) 69-76). In an attempt to bypass the 
limitation, MgLi–X ternaries (X=Ca, Al, Si, Cu, Zn) are studied but none of the five 
solutes is able to simultaneously improve both properties (W. A. Counts, M. Friák, 
D. Raabe, and J. Neugebauer, Adv. Eng. Mat. (2010) in press). 
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Asymptotics-based multiconfiguration methods and the electronic 
structure of transition metal atoms 

 
                                            Gero Friesecke 
 
Abstract: Asymptotics-based Configuration-Interaction (CI) methods are a class of CI 
methods which reproduce, at fixed finite subspace dimension, the exact 
Schroedinger eigenstates in the limit of fixed electron number and large nuclear 
charge. This limit has the multiscale property that the ratio of first spectral gap to 
ground state energy tends to zero, the experimental ratio for atoms  being very close 
to zero, about 1 part in 1000 for Carbon and Oxygen and 1 part in 30 000 for Cr and 
Fe. We describe an efficient algorithm for asymptotics-based CI, with full resolution of 
valence electron correlations. A key ingredient is exact (symbolic) symmetry 
reduction of the CI space at essentially linear computational cost.  
 
Applications to 3d transition metal atoms are in good agreement with experimental 
data. Unlike DFT based studies, even with the best available exchange-correlation 
functionals, our calculations correctly reproduce the anomalous magnetic moment 
and orbital filling of Chromium in the otherwise regular series Ca, Sc, Ti, V, Cr.  
 
Joint work with Christian Mendl (TU Munich). 
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   Molecular dynamics simulations all share a common problem  relevant to the 
time scales of the natural processes being  studied. This is even more challenging 
for ab initio molecular dynamics simulations where computationally  demanding 
force and energy evaluations must be repeated so  many times. Although there 
are a variety of methods to circumvent  this problem but none of them can be used 
in a simulation for  systematically calculating average thermodynamic quantities. 
 We have developed an accelerated molecular dynamics method  which is, unlike 
Monte Carlo methods, based on deterministic  equations and is capable of 
calculating average thermodynamic  quantities in a systematic way. This is done 
without altering  the potential energy landscape. In fact the atomic masses  are 
replaced by the second derivative of the potential energy  which is manipulated to 
avoid affecting the average thermodynamic  quantities. We call this method 
Generalized Mass Dynamics.  We have numerically shown that our approach 
samples the  conformational space more efficiently than normal molecular 
 dynamics simulations. It is particularly advantageous for  ab initio molecular 
dynamics simulations of biomolecules. 
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ABSTRACT

Spontaneous formation and propagation of interfacial microstructures (X and lambda) observed

experimentally during the shape recovery process of single crystals of the Cu-Al-Ni shape mem-

ory alloy cannot be reliably described by the widely used, quasi-static models of SMAs. We

present a simple mathematical model of mobility of the interfacial microstructure based on

an assumption that the propagating microstructure dissipates energy by a viscous mechanism,

whereto the viscosity parameters are empirically tuned such that the macroscopic speed of

propagation of the microstructure agrees with the experimental observations. We show that

such model sufficiently explains the existence of the X- and lambda-microstructures, although

the morphology of these microstructures contradicts the predictions of the classical theory of

martensitic microstructures.

1. Introduction

Formation of the X- and lambda-microstructures between austenite and martensite in single

crystals of the shape memory alloys was firstly reported by Basinsky and Christian [1] for the In-

Th alloy. In the single crystal of Cu-Al-Ni alloy (rectangular parallelepiped), formation of such

microstructures was recently observed by the authors [2] during the thermally induced transition

from the mechanically stabilised 2H-martensite into austenite (see this reference for detailed

description of the microstructures and the experiment). Both microstructures have a shape of

the letter X and consist of two mutually intersecting habit planes separating austenite from

twinned regions of martensite and another pair of mutually intersecting interfaces separating

these twinned regions from the single variant of martensite. The microstructures differ only in

the twinning plane orientation in one of the twinned regions. As shown in [3, 4, 5] the X- and

lambda- microstructures do not fulfil the geometric compatibility conditions, so according to the

classical theory of Ball and James [6] they are not admissible. The aim of this paper is to develop

a simple model governing the spontaneous formation and propagation of these microstructures

through the specimen. Because of the incompatibility mentioned above, the elastic deformation

must be taken into account. Since no external loadings are present, the quasi-static approach

cannot be used, and the speed of the transition is controlled by the dissipation mechanism only.

2. Modelling

To ensure relative simplicity of implementation, we decided to base the model on a suitable

variational principle. The right choice strongly depends on the way how the dissipation mech-

anism is understood and described. In this aspect our model differs from the most of the others

(e.g. [7]).
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We can consider that the energy dissipated during the process is equivalent to the work done by

dissipative (or friction-like) forces, and formulate the following variational condition on total

energy change rate Ė

Ė = Ȧ +
1

2

∫

V

σdiss.
ij ǫ̇ij dx → min , (1)

where Ȧ is a Helmholtz free energy change rate, σdiss.
ij is a dissipative stress tensor and ǫ is

a finite strain tensor. We chose the austenite state as a reference configuration. Then, the

sought strain tensor function ǫij(t) comprises the inelastic transformation strains as well as the

elastic strains. This extremal condition Eqn. (1) can be understood as a particular form of the

Biot’s principle (see [8]) for rate-dependent dissipative systems. Since we are dealing with the

isothermal process, the Helmholtz free energy A is assumed in the form

A = W + Ee = cmVm + caVa + Ee , (2)

where W is the transformation part and Ee is stored elastic energy. The transformation part is

assumed to be a linear function of the martensite and austenite volumes Vm and Va. Notice that

the time derivative of the first term of Eqn. (2)

Ẇ = cmV̇m + caV̇a (3)

is 1-degree homogeneous in transformed volume change rate, since V̇m = −V̇a. Thus, in

fact, it represents not only the change of the transformation part of the free energy, but it can

also comprise the rate-dependent part of the dissipation. The dissipative tensor σdiss.
ij can be

considered in a general form

σdiss.
ij = ηijklǫ̇kl , (4)

where ηijkl is a viscosity tensor, see [9]. Since there are no experimental data for constants ηijkl,

the simple isotropic form is used. For an isotropic body this tensor has only two independent

components, so the dissipative tensor can be written in the form

σdiss. = µV

tr ǫ̇

3
I + µS

(

ǫ̇ − tr ǫ̇

3
I

)

, (5)

where the bulk viscosity µV is related mostly to the thermoelasticity and the shear viscosity µS

is related to the viscous motion of dislocations and twin boundaries. For simplicity, we will

consider the values of µV and µS to be the same both inside all individual phases (martensite,

twinned martensite, austenite) and at the interfaces. Thus, the finite jumps in ǫij at the interface

planes ensure that most of the energy is dissipated by the moving interfaces.

The model depends on four yet unspecified constants: the transformation parts of the free energy

density of the martensite and austenite (cm, ca), and two viscosity constants (bulk viscosity

µV , shear viscosity µS). Unfortunately, there are no (or poor) experimental estimates of these

constants. Thus, we choose them so that the model fits observations in the main properties.

The energy densities cm and ca are defined up to an additive constant and the model depends

on their difference only, thus we set ca = 0 J.m−3. The shear viscosity µS related to motion

of dislocations is chosen to be approximately ten times smaller than the bulk viscosity. The

absolute values of the constants were fitted to observed propagation velocity and expected latent

heat absorption rate, which was supposed to be higher but comparable to the dissipation rate

(according to infrared microscopy observations in [10] the specimen is undercooled by the

microstructure motion). Here, the velocity (about 2 mm.s−1) was taken from [10] and the latent

heat of the transition was taken from [11]. The obtained parameters follow: ca = 0 J.m−3,

cm = 5 × 107 J.m−3, µV = 3.36 × 1010 Pa.s, and µS = 1.2 × 109 Pa.s.
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3. Solution and Results

First of all the suitable parametrisation of the microstructure geometry must be found. Evo-

lution of selected geometric parameters defines the finite strain tensor ǫij(x, t). Dimensions of

the specimen are fixed, twinned regions are treated as homogeneous and interfaces are supposed

to be exact planes. Thus, the microstructure is fully described by ten parameters defining the

position of whole microstructure within the specimen (two parameters), orientations of all habit

planes and martesite–twinned martensite interfaces (six parameters), and the volume fractions

of the minor martensite variants in both twinned regions (two parameters). For detailed de-

scription of chosen parameters see [4, 5]. Then, the problem Eqn. (1) comprises ten-parametric

optimisation. Since the underlying processes governing the orientations of the interfaces occur

at faster time-scale than the movement of the whole microstructure, we split the optimisation

into two nested loops. In the inner optimisation loop for the fixed microstructure position the

optimal microstructure geometry is found with respect to the stored elastic energy. Then, the

outer loop finds the next optimal microstructure position according to Eqn. (1). All computa-

tions were done in MATLAB in connection with Comsol Multiphysics FEM environment. For

implementation details see [3, 4, 5].

Main results of the simulation of the propagating lambda-microstructure are briefly presented

in Fig. 1. The results for the X-microstructure are qualitatively the same. First image illustrates

evolutions paths of the microstructure positions for two distinct starting configurations. On the

next graph the behaviour of the stored elastic energy along the evolution paths is presented.

Notice, that the stored elastic energy increases during the motion. Last two images show the

von Mises stress distribution in the cross-section of the lambda-microstructure for the starting

and finishing configuration of the first path. It should be also pointed out that the behavior of

computed microstructure propagation velocity is in agreement with the experimental observa-

tions reported in [10]. Within these observations the velocity drops when the microstructure is

fully formed and further remains almost constant. This is because of lower dissipation during

the microstructure formation.
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Figure 1: Lambda-microstructure evolution. Stress distribution for chosen configurations.

4. Conclusions

We have constructed a model governing the spontaneous evolution of the microstructure under

the constant external conditions. The main difference from the most of the other published
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models is in the incorporation of the rate-dependent dissipation mechanism, which enables us to

describe fast evolution processes. We showed that our model is able to catch the main properties

of the microstructure evolution. Especially, it explains observed tendency of the microstructure

to evolve towards the more incompatible state (the state with the higher stored elastic energy).

This behavior contradicts the classical condition on geometric compatibility, under which such

microstructures are inadmissible.
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ABSTRACT

Shape memory alloys can be described in a uniform way relying on energetic considerations

only. We present micromechanically motivated models for single and polycrystals. The ap-

proach studied here is based on energy minimization and includes hysteretic effects via a sim-

ple dissipation ansatz. It is capable of reproducing important aspects of the material behavior

such as pseudoelasticity and pseudoplasticity. The influence of anisotropies in the crystalline

texture as well as in the elastic constants of the austenite and the martensitic variants are also

discussed. Furthermore, heat produced during phase transformations is accounted for in the

model via simultaneous solution of the heat conduction equation which couples the heat pro-

duction with phase transformation. The entire presentation emphasizes the usage of variational

methods leading to the notion of relaxed potentials. Interrelations to various other applications

of these concepts will be highlighted.

1. Introduction

Since shortly after the discovery of the special aspects in the material behavior of shape memory

alloys, there have been many efforts to model its important features. The main focuses are, on

the one hand, to find appropriate phenomenological descriptions for macroscopic applications

and to explain microscopic properties by physical considerations, on the other hand. The litera-

ture on these topics is too extensive to be summarized here; well-known examples are, however,

Ball and James1, Stupkiewicz and Petryk26, Kohn18, and Truskinovsky28 for microscopic mod-

eling.

In this paper, we connect earlier works on the energy density computation for monocrys-

tals,8,7,14, with others on the modeling of polycrystals,11. The connection is established based

on an approach by Bruno et al.4 and Smyshlyaev and Willis24 as described in12.

The material behavior of shape memory alloys is characterized by transformation strains η,

chosen to be η0 = 0 for the austenite, and elastic constants collected in the fourth-order elas-

ticity tensor C. Furthermore, the chemical energy αi is introduced to distinguish between the

height of the energy wells of different crystallographic phases: αA = α0 for the austenite and

αM = αi, 1 ≤ i ≤ n, for the different martensitic variants.

Assuming linear elastic material behavior, the energy density for pure variants in the monocrys-

talline case is

W (ε, ii) =
1

2
(ε− ηi) : C : (ε− ηi) + αi,

where ε is the linearized strain and ii are the unit-vectors in n+ 1-dimensional variant space.
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Since deformations of several percent are observed in the material behavior of shape memory

alloys, it may, at first glance, seem surprising that a linear elastic model is used here. However,

most of this deformation is realized by phase transformation processes while the additional

elastic straining of the different phases remains clearly limited. For this reason, a linear elastic

model is suitable for most technical applications which are, in general, designed to bear loads

in the regime of the transformation stress where the influence of dislocation-mediated plasticity

is still negligible.

The energy at every microscopic material point is determined as the one minimizing the elastic

energy for a given strain ε

W (ε) = min
i

[W (ε, ii)] . (1)

Due to the non-convexity of this formulation, further energy reduction can be reached by mi-

crostructure formation on the mesoscopic level. Mathematically, this corresponds to the quasi-

convexification of Eq. (1) in the sense of5

QWmono (ε) = min
c

QWmono (ε, c) with

QWmono (ε, c) = inf
χ,φ







∫

Ω

W (ε+∇sφ (y) , χ (y)) dy

∣

∣

∣

∣

∣

∣

(2)

φ ∈ W 1,2
per (Ω) ,χ (y) ∈ Pn+1

pure,

∫

Ω

χ (y) dy = c







.

Expanding Eq. (2) gives rise to the definition of the so-called energy of mixing

wmix (c) = inf
χ,φ







∫

Ω

∇sφ : C :

(

1

2
∇sφ−

n
∑

i=0

χiηi

)

dy

∣

∣

∣

∣

∣

∣

φ ∈ W 1,2
per (Ω) ,χ (y) ∈ Pn+1

pure,

∫

Ω

χ (y) dy = c







and the alternative formulation of the quasiconvex energy density

QWmono (ε, c) =
n
∑

i=0

[ciW (ε, ii)] + wmix (c) , (3)

where the first addend is a Taylor-type upper bound corresponding to the assumption of a con-

stant strain throughout the representative volume element. This formulation has also been em-

ployed in several earlier works on the energy-based modeling of shape memory alloys,8,9,14.

Due to the complexity of its constraints, no direct expression is known for the energy of mixing

unless a maximum of two18 or three variants are considered25.

2. Lamination Upper Bound

As an estimate to the energy of mixing, we introduce a lamination upper bound based on a

microstructural pattern, which consists of austenite and twinned martensite. The choice of the

twinned martensitic variants is constrained by the linearized lamination mixture formula

ηi − ηj =
1

2
(n⊗ a+ a⊗ n)
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as developed in1 and3. This formula determines wether variants i and j are able to form a stress

free interface with each other. Only those pairs of variants that fulfill this equation are combined

to twins which are then numbered pairwise (variant 1 twinned with variant 2, 3 with 4, and so

on) while the austenite remains to be variant 0.

The suggested microstructure is employed to derive the second-order lamination upper bound

to the energy of mixing

wmix (c) ≤ wlam (c) =
M
∑

K=1

dKθK (1− θK)φ (i2K−1 − i2K) (4)

+
M
∑

K=1

(d0 + d1 + · · ·+ dK−1) dK
d0 + d1 + · · ·+ dK

φ
(

d(K−1) − θ(K)
)

with

φ (κ) = inf
{

−G (ω) : (κ⊗ κ)|ω ∈ Sd−1
}

G (ω) =
1

2
(ω · C : ηk) · T (ω)−1 · (ω · C : ηl) ikil

u ·T (ω) · u = (ω ⊗s u) : C : (ω ⊗s u) ∈ Rd×d
sym ,

where d is the spacial dimension of the problem considered, θJ = c2J−1

c2J−1+c2J
is the volume

fraction of the first variant within the J th twin (where J = 1, . . . ,m runs over the different

twins), θJ = θJe2J−1 + (1− θJ) e2J is the normalized phase fraction vector for the J th twin,

dJ = c2J−1 + c2J is the volume fraction of the J th twin within the microstructure, and dJ =
∑J

K=0 dKθK/
∑J

K=0 dK is a vector which contains the normalized sum of the austenite and all

martensitic twin phase fractions up to a certain twin J . In Eq. (4), each permutation of the

ordering of the martensitic variants into twins as well as of the order of these twins gives a new

value for the upper bound. A detailed derivation and proof of this bound may be found in7.

3. Extension to Polycrystals

Now, let us consider a polycrystalline domain consisting of a large, but finite number of crys-

tallites N . Each crystallite j has a certain orientation given by the corresponding rotational

tensor Rj; the volume fraction corresponding to this crystal orientation is denoted by ξj . The

transformation strains have to be rotated to the local crystallographic orientation and result in

η
j
i = (Rj)

T
· ηi ·R

j . Consequently, the elastic energy of variant i in grain j yields

W̄
(

ε, ii,R
j
)

=
1

2

(

ε− η
j
i

)

: C :
(

ε− η
j
i

)

+ αi

and the mesoscopic energy of the polycrystal is given by

QW̄ (ε) = inf
φ̃







∫

Ω

QWmono
(

R (y)
(

ε+∇sφ̃ (y)
)

RT (y)
)

dy

∣

∣

∣

∣

∣

∣

φ̃ ∈ W 1,p
per (Ω)







.

Here, the monocrystalline quasiconvexification, which is not known in explicit form, would

have to be computed for the crystallographic orientation present in every point of the represen-

tative volume element Ω.
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In a sophisticated paper by Smyshlyaev and Willis24, these authors present a strategy to employ

monocrystalline upper estimates for bounding the energy of polycrystals from above:

QW̄ (ε) ≤ QW̄lam (ε) = inf
c
QW̄lam (ε, c)

with

QW̄lam (ε, c) =
1

2
(ε− 〈η〉) : C : (ε− 〈η〉)−

1

2
〈η〉 : Q : 〈η〉+ 〈α〉 (5)

+
1

2

N
∑

j=1

ξj 〈η〉j : Q : 〈η〉j +
N
∑

j=1

ξjQWmono
lam

(

〈ηmono〉j , cj
)

and

〈η〉 =
∑

i,j

ξjcjiη
j
i , 〈η〉j =

∑

i

cjiη
j
i , 〈ηmono〉j =

∑

i

cjiηi, 〈α〉 =
∑

i,j

ξjcjiαi.

Here, we have plugged in the second order lamination bound presented above as an estimate of

the relaxation with fixed volume fractions in the monocrystalline case. The fourth order texture

tensor Q used in Eq. 5 is defined as follows:

Q =
1

|Sd−1|

∫

Sd−1

∆̃∞ (ζ) dζ,

where

∆̃∞

klop (ζ) =
2λ̄µ̄

λ̄+ 2µ̄
Ukl (ζ)Uop (ζ) + µ̄ [Uko (ζ)Ulp (ζ) + Ukp (ζ)Ulo (ζ)] ,

Ukl (ζ) = δkl − ζkζl,

and
∣

∣Sd−1
∣

∣ is the surface of the unit sphere.

A detailed discussion of this bound including the influence of the polycrystalline texture may

be found in12.

4. Convexification

A simple and intuitional way to obtain an estimate for the energy density of polycrystals is to

assume a constant stress within each variant of each crystallite and neglecting the compatibility

constraints. Since, in this case, minimization is performed over a larger set of microstructures

than physically available, this so-called convexification estimate is a lower bound:

QW̄conv (ε, c) = inf
ε
j
i

{

∑

i,j

ξjcjiW
(

ε
j
i , ii,R

j
)

∣

∣

∣

∣

∣

ε =
∑

i,j

ξjcjiε
j
i

}

. (6)

The remaining constraint in Eq. (6) makes sure that the overall strain is preserved. In a finite

strain formulation, further refinement of the bound could be reached by additionally incorporat-

ing minors and the determinant of the overall strain which would lead to the polyconvexification

of the energy density.
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The formulation given in Eq. (6) has the advantage that the minimization can be performed

analytically. The solution

QW̄conv (ε, c) =
1

2
(ε− 〈η〉) : C : (ε− 〈η〉) + 〈α〉 (7)

is discussed in11 in detail for the more general case of anisotropic material properties for austen-

ite and martensite.

In the monocrystalline case, the convexification lower bound may be used to derive an alterna-

tive estimate for the energy of mixing:

wmix (c) ≥ wconv (c) = −
1

2

n
∑

i=0

ciηi : C : ηi +
1

2

n
∑

i=0

n
∑

k=0

cickηi : C : ηk. (8)

5. Micromechanical Model

Given the good agreement between upper and lower bounds, we choose the more straightfor-

ward convexification estimate to establish an energy-based micromechanical model for poly-

crystalline shape memory alloys.

In order to close the formulation, we introduce a dissipation function which is homogeneous of

first order in the volume fraction change rates

∆(ċ) = r

√

√

√

√

N
∑

j=1

ξj
n
∑

i=0

(

ċji
)2
.

This kind of dissipation function has been shown to be suitable for describing rate-independent

materials in19,20. The general procedure of describing the dissipative aspects of the behavior of

rate-independent materials by dissipation functions is discussed in10 and21. A more sophisti-

cated approach to model dissipation in phase transforming materials may be found in2.

The material behavior is then derived by minimizing the total power

L (c, ċ) =
d

dt
QW̄ rel (ε, c) + ∆ (ċ) = −q · ċ+∆ (ċ) (9)

at constant strain ε, where we have introduced the thermodynamically conjugated driving force

to ċ, q = −∂QW̄rel/∂c, as an abbreviation. Furthermore, we define the active sets Aj =
{

i
∣

∣cji > 0 ∨
(

cji = 0 ∧ ċji > 0
)}

as well as the active deviator (devAjq)ji = qji −
1

n
Aj

∑

k∈Aj

qjk,

nAj being the number of elements in Aj , to finally obtain the evolution equation

ċji =
ρ

ξj
[

devAjqji
]

Aj

along with the Kuhn-Tucker conditions

ρ ≥ 0 , Φ =
∑

i,j

1

ξj
(

devAjqji
)2

− r2 ≤ 0 , ρ Φ = 0

and the consistency condition

devAjqji < 0 ∀ i /∈ Aj (10)

which serves as a “switch” and determines whether a certain variant that has been inactive

before has to become active in a current time step. A detailed discussion of this model may be

found in11.
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6. Finite Element Implementation Of The Pure Model

6.1 Finite element implementation

The previously presented micromechanical model provides good results on the material point

layer11. Thus, we execute an implementation of this model in the scope of finite elements to

predict the material behavior of whole specimens. In order to do so, we use the common total

potential of a body as

Π =

∫

Ω

QW̄ rel dV −

∫

Ω

u · f dV −

∫

∂Ω

u · t dA → min
u

(11)

which is going to be minimized with respect to the unknown displacements u under certain

constraints (supports, prescribed displacements). In Eqn. (11), Ω denotes the total volume of

the body, f body forces and t tractions acting on the body’s surface. Minimization of Eqn. (11)

yields

Ru :=

∫

Ω

BT · σ̃ dV −

∫

Ω

Nu · f dV −

∫

∂Ω

Nu · t dA
!
= 0 , (12)

with shape functions Nu, the common differential operatorB and the stress σ̃ in Voigt notation.

6.2 Numerical results

We present numerical results for the model in the scope of finite elements for pseudo-elastic

NiTi. In order to show convincing results we try to map the material behavior in a tension test

documented by Schäfer and Wagner22. There, a stripe of pseudo-elastic NiTi was fixed on both

ends and a prescribed displacement was loaded at one end whereas the other end stayed fixed.

To capture the experimental factors we fix the first two rows of nodes within the discretized

body. That ensures to have comparable constraints to the clamping in the experiments. The

numerical results for the phase distribution of austenite are presented in Fig. 1.

We see that the transformation starts exactly where the stress peaks evolve due to boundary

conditions. This behavior was observed in experiments as well. After a certain amount of

austenite has transformed to a specific combination of different martensite variants, the phase

transformation spreads over the body. An almost homogeneous transition follows the initiate lo-

cal transformation which is in strong contrast to experiments. There, transformation fronts run

through the specimen and all the phase transitions occur in those very localized zones22. How-

ever, the global material response shows the well known characteristics of poly-crystalline shape

memory alloys as a plateau during phase transformation and a hysteresis due to the dissipative

character of the transformations. This and further analysis of the finite element implementation

of the pure model may be found in Junker and Hackl16.

7. Finite Element Implementation Of A Modified Model

7.1 Modified model

Obviously the localized, Lüders band like transformations cannot be displayed by the pure

model. Therefore we modify the model in the way that we distinguish between nucleation

and evolution of martensite, Hackl and Junker17. It is easy to imagine that in a pure austenitic

lattice for the nucleation of martensite higher energetic bounds have to be overcome than for

the propagation and evolution starting from martensite grains. We implement this fact into
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Figure 1: Distribution of the austenite phase at various load steps calculated with the pure

model.

our model by a modification of our ansatz for the dissipation. Since we do not account for

grain boundaries and their possibility of coherency in the entire model, we introduce a variable

which serves as measure for the amount of nucleated martensite globally for the entire material

point. Consequently, we use the average amount of austenite as this measure and reformulate

the dissipation as

∆(|c0|) = r̃(|c0|)

√

√

√

√

N
∑

j=1

ξj
n
∑

i=0

(

ċ
j

i

)2

, |c0| =
N
∑

j=1

ξjcj0 . (13)

with an appropriate ansatz for r̃(|c0|).
This new approach would yield mesh dependent results due to its softening character. To cir-

cumvent this fact, we introduce a further space dependent field variable, denoted by ϕ, which

is coupled to the average amount of austenite. In order to do so, we expand the relaxed energy

QW̄ rel via a coupling term and additionally via the field function’s gradient multiplied with

some factors β and γ,

QW̄ tot = QW̄ rel +
β

2
(ϕ+ 1− |c0|)

2 +
γ

2
||∇ϕ||2 . (14)

For further details for this general approach see Dimitrijecić and Hackl6.

Now, the extended energy QW̄ tot is used consequently everywhere in the model instead of
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QW̄ rel. Hence, the driving forces give

qji = −
∂QW̄ tot

∂cji
= −

∂QW̄ rel

∂cji
+ β(ϕ+ 1− |c0|)δ0i , δ0i : Kronecker-Delta . (15)

The changed driving forces influence the evolution of the crystallographic phases, obviously.

Therefore, the evolution at each integration point is not only coupled to the other points indi-

rectly via the displacement field but also directly via the current state of volume fractions. If

we now penalize the gradient of the field variable ϕ we indirectly penalize the gradient of the

volume fractions, too. Thus, we receive mesh independent results.

Replacing the energy QW̄ rel by the extended energy QW̄ tot in the potential in Eqn. (11) results

in a further variational equation for ϕ since we have to seek for the minimum of Π with respect

to all space dependent variables. Due to their independence at first glance, we receive

∫

Ω

δε :
∂QW̄ tot

∂ε
dV −

∫

Ω

δu · f dV −

∫

∂Ω

δu · t dA =0 ∀ δu
∫

Ω

c (∇ϕ · ∇δϕ) dV +

∫

Ω

β (ϕ+ 1− |c0|) δϕ dV =0 ∀ δϕ . (16)

So, the factor c controls the impact of the gradient in the minimization and may be interpreted as

a global parameter for surface energy. We solve the system of variational equations, Eqn. (16),

in a coupled way.

7.2 Numerical results for the modified model

We show numerical results for all the same boundary value problem as presented earlier but

now we make an ansatz for the dissipation coefficient being a function of the average amount

of austenite as

r̃(|c0|) = r (0.8+ 0.2 cos (2π|c0|)) . (17)

This simple approach ensures that a further evolution of martensite is preferred when the nucle-

ation has been accomplished. Since a complete vanish of martensite would again yield higher

energy bounds, the energy costs increase when the average amount of austenite tends to zero.

This approach is just an example. We already tried different kinds of functions which all fit in

the idea for reduced energy costs and the numerical results only differed slightly if there were

any differences at all.

The results which we present in Fig. 2 show at the beginning a similar material behavior as

received from the pure model: At the nodes where the boundary values are prescribed stress

peaks occur and force the material to transform right there. In contrast to the pure model, the

transformation proceeds in these localized zones until a certain minimum value of remaining

austenite has been reached. After that, the evolved transformation fronts move through the

specimen until they meet. Only in the area of the Lüders like fronts all transformation occur.

8. Conclusion

We presented different aspects of energy minimization in the scope of non-convex energy func-

tionals applied to shape-memory alloys. Based on relaxation of energies which is part of con-

vexification, we presented a micromechanically well motivated model which depends mostly

on experimentally determined material parameters.
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Figure 2: Distribution of the austenite phase at various load steps calculated with the modified

model.

For this model we presented furthermore a finite element implementation whose results could

be remarkably improved by a modified dissipation ansatz. The numerical calculation of a ten-

sion test is in nice coincidence to experimental observations.

Future work will include the simulation of cubic to monoclinic transforming, and thus thirteen-

variant, materials and intermediate crystallographic phases such as the well-known R-Phase.
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Crystal plasticity is the result of the motion and interaction of dislocations. There is, 
however, still a major gap between our knowledge of the behavior of individual 
dislocations and continuum crystal plasticity models. Important progress has 
recently been made in advancing averaging techniques for dislocation systems 
and theirs evolutions [1, 2]. However, these techniques mostly apply to small 
deformations and single slip situations. A prerequisite for averaging dislocation 
systems is a pseudo-continuum description of the evolution of a single dislocation 
[1, 3]. In the current paper we develop the pseudo-continuum description of a 
dislocation moving in a dislocated deforming crystal in the framework of 
multiplicative finite plasticity. 
 
We argue that the understanding of dislocations as topological defects requires 
viewing the dislocation density tensor as a vector valued differential two-form as 
defined by Kondo [4]. This premise leads us to very clear geometric interpretations 
both of the tensor itself and of various terms appearing in its evolution equation. 
The key to make the geometric interpretations obvious is the differential form 
formalism which allows treating dislocations as functionals (so called currents), 
providing at the same time the required pseudo-continuum description. All extra 
terms resulting from considering finite deformations as compared to small 
deformations are related to dislocation cutting processes and the generation of 
kinks and jogs. We conclude that in multiple slip situations the dislocation state 
may in general not be fully characterized by dislocation densities solely located in 
the slip planes. 
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ABSTRACT 

 

In this paper, numerical modeling based on crystal plasticity theories at various scales are 

performed to incorporate the effects of microstructure and generate input for simpler and 

computationally efficient macroscopic (phenomenological) models. Information 

concerning the initial anisotropy and its evolution with accumulated deformation has 

been generated from measured initial texture and tensile data by employing a rate-

dependent crystal plasticity model and a unit-cell finite element (FE) approach. Crystal 

plasticity simulations have been used for the identification of the anisotropic coefficients 

involved in CPB08 criterion, which is a form of the macroscopic yield criterion proposed 

by Plunkett et al. [1], which is specifically tailored for FCC metals. Numerical 

simulations of the forming limit diagram (FLD) are performed for the continuous cast 

AA-5754 aluminum sheet alloy based on the CPB08 yield function and a Taylor-type 

polycrystal plasticity model together with the Marciniak-Kuczynski (M-K) analysis.  

 

 

1. Introduction 

 

In industrial forming operations involving thin sheets, formability is limited by the onset 

of localized necking. Forming limit diagram (FLD) has proved to be a useful tool to 

represent conditions for the onset of necking and evaluate formability of sheet metals [2]. 

The Marciniak-Kuzynski (M-K) analysis [3] has been one of the most commonly used 

approaches for numerical determination of FLD’s. FLD predictions based on the M-K 

analysis can be grouped into two categories based on the length scale of the simulations; 

macroscale (phenomenological models) and microscale (crystal plasticity models).  

 

In this paper, numerical simulation of FLD’s for aluminum sheets are performed based on 

the M-K analysis. The anisotropic behavior of the aluminum alloy is modeled using the 

yield function proposed by Plunket et al. [1] and a rate sensitive crystal plasticity model 

together with a unit-cell approach is employed to generate input for the 

phenomenological yield function. Finally, a Taylor-type polycrstal plasticity model is 

also used to simulate FLDs and the predictions are compared to each other and 

experimental observations.     

 

74



2. Constitutive Models 

 

Different constitutive models (based on the length scale of the applications) are used in 

the numerical simulations. For micro-scale simulations, the rate-sensitive crystal 

plasticity theory developed by Asaro and Needleman [4] is employed in numerical 

models at two different length scales to obtain the response of a polycrystal aggregate 

(comprised of many grains). In the first model, each grain in the polycrystal aggregate is 

modeled with one or more finite elements. Equilibrium and compatibility is enforced 

throughout the polycrystal aggregate through the “weak” finite element form. In the 

second model, the classical Taylor assumptions are employed to obtain the response of 

the polycrystal aggregate. For details of the formulation we refer to Wu et al. [2]. 

Furthermore, from hereon, these models will be referred to as FE/grain and Taylor model 

respectively.  
 

The yield function proposed by Plunkett et al. [1] is employed in the macro-scale 

simulations since a very recent research by Inal et al. [5] have shown that this yield 

function can be successfully applied to the description of FCC materials. For pressure-

insensitive materials with no tension-compression asymmetry, the effective stress 

associated with Plunkett et al. [1] orthotropic yield criterion can be written in the form: 

 

                                                       (1) 

 

In Eqn. 1,  and  are the principal values of the transformed tensors. 

For details of the formulation we refer to Inal et al. [5]. 

 

 

4. M-K Analysis 

 

The M-K analysis has been performed for a continuous cast (CC) aluminum sheet alloy 

AA5754 to predict the FLD. The constitutive relation given below along with the above 

yield function has been employed in the M-K Analysis. 

 

                                                                                                          (2) 

 

where, is the rate of the true stress tensor !, L is the tensor of elastic moduli, D is the 

rate of deformation tensor,  f is the yield function, is the plastic strain, are the 

normals given by and . The implementation is based on the method 

described by Wu et al. [2] and will not be summarized again.  
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5. Results and Discussion 

 

The material considered in this study is a continuous cast AA5754 (3.1% Mg, 0.25% Mn, 

<0.01 % Cr, 0.24% Fe, <0.1% Si, balance Al) sheet. The initial texture for AA5754 is 

presented in Fig.1. The material parameters used in the crystal plasticity models were 

determined by curve fitting the simulated uniaxial stress-strain curve to the corresponding 

experimental curve (Fig.2). Tensile properties have been simulated using the FE/grain 

model at 7 directions between 0-90° in increment of 15°, with 0° being the rolling 

direction. The yield strength was selected at 0.2% offset, while the R-values were 

measured at 15% elongation. In the numerical simulations with the yield function, a 

Hollomon type power law relationship given by Eqn. 3 has been employed.  

 

               " = E #  if  " # "y , " = K #
N  if " > "y                                        (3) 

 

where, E=69,489 MPa, K = 411.5 MPa and N = 0.2866. The work hardening exponent, N, 

was calculated from the 0.2% offset until the maximum load.  

 

                               
  Figure 1. Initial pole figure                          Figure 2. Experimental and simulated stress-      

                   for AA5754                                                strain curves in uniaxial tension 

 

As mentioned in the previous section, the parameters of the yield function CPB08 can be 

obtained by simulations of uniaxial tension along various angles to the rolling direction 

with the FE/grain model. The same methodology described by Inal et al. [5] has been 

used to identify anisotropy coefficients for the yield function CPB08 by employing 

FE/grain crystal plasticity model. The variations of yield stresses and R-values with 

orientation obtained with CPB08 yield function with anisotropy coefficients obtained 

using the FE/Grain crystal plasticity model are presented in Figs. 3 respectively. It can be 

seen that CPB08 successfully captures the trends for both yield stresses and R-values. 

This result is a significant improvement compared to other yield functions such as Hill 

1990, 1993 and Barlat 1989 (Prasad et al. [6]). 

 

The predicted FLD’s are shown in Figure 4. Simulations show that the FLDs predicted by 

both models are in very good agreement with experimental observations. For negative 

strain ratios, the predicted forming limits with both models are slightly higher than the 

experimentally measured FLD. Predictions are very close to experimental observations 

for positive strain ratios, where the simulation with the yield function CPB08 slightly 
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over predicts the experimental FLD while the simulation with the Taylor model slightly 

under predicts the experimental FLD. Simulations presented in this paper show that the 

proposed multiscale approach can successfully predict the formability of the aluminum 

alloy 5754. Furthermore, this methodology eliminates a large number of mechanical tests 

required to identify the anisotropy constants used in the phenomenological models such 

as the yield function CPB08. 

 

                         

                                       (a)                                                                (b) 

  

Figure 3. Comparison of (a) Yield stresses (b) R-values with orientation (w.r.t RD) 

 
 

 

Figure 4. Experimental and predicted FLDs 
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In twinning deformation, a straight shape memory alloy (SMA) bar composed of 
equal amounts of martensite twins M −  and M +  is axially compressed by a load 
beyond the detwinning load, thus shifting all M +  elements into the M −  state. 
Once unloaded, the bar remains in the residual compressive strain state. 
Thereafter, lateral loading causes a remnant deflection due to quasiplastic 
M M− −  transitions in the stretched bar fibers. Hence, the bar is left curved upon 
removal of the load. Astonishingly, subsequent axial compression causes the bar 
to straighten [1]. 
 
We investigate this behavior by a finite-element simulation employing the material 
model for SMA by Müller, Achenbach and Seelecke [2]. Our investigation reveals 
the temporal and spatial variations of the phase fractions and correlates them to 
stresses and moments. The simulation results for the stress evolution at a highly 
stressed location are illustrated in Fig. 1, showing the spatial distribution of stress 
through the thickness of the bar, visualized by 27 fibers (identified as section 
points (SP)). Twelve SP successively achieve the transformation stress plateau. 
Unsymmetrical yielding imposes a shift of the neutral fiber. The initially elastic 
unloading causes the reversal of the stress profile. The stress state is nonuniform 
until the deflection is eliminated and all volume elements merge onto a unique line. 
 
 

 

Fig. 1: Stress 
history for all 
fibers (SP) at 
mid-length of the 
bar.  
SP1-SP27:  indi-
vidual fibers 
across bar 
thickness (SP1: 
tension side, 
SP27: com-
pression side). 

Timeline (t in sec): lateral loading 20 25t≤ ≤ , unloading 25 30t≤ ≤ , and final axial 

loading 30 35t≤ ≤  and unloading 35 40t≤ ≤ . Initial detwinning not shown. 
 
[1] Y. Urushiyama, D. Lewinnek, J. Qiu, J. Tani, JSME A, 46(1), 2003, p. 60-67 
[2] S. Seelecke, I. Müller, Appl. Mech. Rev., 57 (1), 2004, p. 23-46 
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Description of thermodynamic properties and phase transitions of materials in a 
wide range of parameters is of both fundamental and practical interests. Equations 
of state for metals over the range from normal conditions to extremely high 
pressures and temperatures are required for numerical simulations of processes in 
continuous media under pulsed power influences (such as, for example, high 
velocity impingement of solids or ultrashort laser ablation of matter) at many 
different time scales. 
 
In this paper, a new thermodynamic approach to modeling of equation of state for 
metals with taking into account the polymorphic transformations, melting and 
evaporation effects is proposed. Multiphase equations of state for aluminum, 
copper, iron, tin, lead and some other metals are obtained on the basis of the 
model. Phase diagrams of the substances are calculated including regions of 
solid, liquid and gas states. Results of calculations are given in comparison with 
available experimental data and quantum mechanical evaluations over a wide 
range of temperatures and pressures. 
 
The proposed multiphase equations of state provide for a reliable description of 
thermodynamic properties of the metals in a broad region on the phase diagram. 
That gives an opportunity to effectively use these equations of state in numerical 
simulations of unsteady-state hydrodynamic processes in materials at high energy 
densities. 
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ABSTRACT

A concurrent hybrid atomistic and coarse-grained-particle method is proposed for the simula-

tion on fast crack propagations. The coupling method used in the method is simpler than the

former approaches without loss of accuracy and efficiency. The simulation of the fast crack

propagation is performed with the adaptive selection of the atomistic region for reducing the

computational cost, and its result shows the present coupling method with the adaptive selec-

tion of the atomistic region is highly efficient and sufficiently accurate.

1. Introduction

The crack propagation is typical multiscale phenomenon. It is because extensive stress field

controls stress concentration at the crack-tip and breakages of atomic bonds at the crack-tip

are closely related to the stress concentration. For the fast brittle crack propagation, a change

in stress field and energy radiation from the crack-tip have significant roles on crack speed

and instability. Furthermore most materials are brittle at low temperature and become ductile at

certain temperature. Therefore multiscaleness, dynamics, and temperature are important factors

in the fast crack propagation.

Over the past decade a variety of multiscale simulation approaches which connect atomistic and

continuum (or coarse-grained particle) methods have been proposed. Most of these approaches

are limited to the simulation on static problems only, because these cannot eliminate the reflec-

tion of short-wavelength wave coming from the atomistic region to the interface of atomistic

and continuum regions. Although some coupling methods, such as the bridging scale method

and the bridging domain method, can reduce the reflection of short-wavelength wave, these also

have drawbacks in the computational cost or flexibility on applications.

In this paper we propose a hybrid simulation method which couples atomistic and coarse-

grained-particle (CGP) methods with eliminating the reflection of short-wavelength wave. Present

hybrid method is applied to the simulation on the fast crack propagation with using the algo-

rithm that adaptively changes the atomistic region to follow the moving crack-tip.
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Figure 1: Schematic picture of the configuration of extra atoms/particles in the BEP coupling

method. Filled circles and squares are real atoms and particles, open circles and squares are

extra atoms and particles.

2. Coupling of Atomistic and Coarse-Grained-Particle Systems

2.1 Coarse-Grained Particle Method

In the CGP method a group of atoms is represented by a CG particle with the coarse-graining

relation, UI =
∑

i fIiui, where UI and ui are displacements of a CG particle-I and an atom-i,
and fIi the weighting function.1 The weighting function is obtained from the linear interpolation

function NIi, which is commonly used in the finite element method or the quasicontinuum

method, through f = [NN t]−1N . The CGP energy is defined as a statistical mechanical

average concerning the atomistic Hamiltonian Hatom as

ECGP ≡
∫

d{u}d{p}Hatom e−βHatom ·
∏

I

δ

(

UI −
∑

i

fIiui

)

· δ
(

U̇I −
∑

i

fIipi/mi

)

. (1)

Assuming the interatomic potential in the atomistic Hamiltonian is a harmonic form, the CGP

energy is obtained also in a harmonic form as

ECGP = d(Natom − NCGP)kBT +
1

2

∑

IJ

(

U̇IMIJ U̇J + UIKIJUJ

)

, (2)

where d, kB, and T is the dimension, Boltzmann factor, and the temperature, MIJ and KIJ are

the mass matrix and the stiffness matrix which are systematically calculated via the weighting

function. Since MIj and KIJ are constructed from a mass and a force constant in the atomistic

system, elastic properties and phonon dispersions in the CGP system agree well with those in

the atomistic system. Therefore the CGP method is a promising candidate to be coupled with

the atomistic method.2

2.2 Bridging Extra Particles (BEP) Method

Since the shortest wavelengthes in the atomistic and the coarse-grained systems are different,

some short-wavelength components cannot exist in the coarse-grained system. This may cause

the reflection of short wavelength wave coming from the atomistic region to the coarse-grained

region. The reflection wave is a particular problem on coupling of the atomistic and coarse-

grained systems in the simulation on dynamic problems.

To overcome the reflection at the interface, extra atoms and particles are introduced beyond

the interface as shown in Fig. 1; these extra atoms and particles work as mediums to transfer
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long-wavelength waves and as a sink for short-wavelength waves that cannot exist in another

system.3 These extra atoms and particles feel correction (or constraining) forces as

f
(e)
i = −∂Vatom

∂r
(e)
i

− k̃

(

u
(e)
i −

∑

I

NIiUI

)

− miγ

(

u̇
(e)
i −

∑

I

NIiU̇I

)

, (3)

F
(e)
I = −∂VCGP

∂R
(e)
I

−
∑

J

K̃IJ

(

U
(e)
J −

∑

i

fJiui

)

− γ
∑

J

MIJ

(

U̇
(e)
I −

∑

i

fJiu̇i

)

, (4)

where k̃ and K̃IJ are spring constants constraining to match displacement fields of two systems,

γ the damping constant concerning energy dissipation. These k̃, K̃IJ , and γ are homogeneous

in the extra regions except at the edge of the systems (see Fig. 1), their values at which should

be larger such that displacements of two systems strictly match each other.

The γ value should be sufficiently small not to reflect incoming waves at the interface, and

should not be too small to eliminate these waves inside the extra region. In a damped oscillation

scheme, an oscillation frequency, ω, becomes
√

4ω2
0 − γ2/2 where ω0 =

√

k0/m and k0 is

the characteristic force constant of the system. The damped oscillation frequency ω is required

to be almost same as ω0 not to reflect incoming waves, so here γ = 0.2ω0 is chosen to be

ω =
√

0.99ω0.

3. Adaptive Selection of Atomistic Region In the Crack Propagation Simulation

In order to reduce the computational cost of the simulation on the crack propagation, an al-

gorithm that the atomistic region changes its position to pursue the crack-tip and dislocations

emitted from the crack-tip is developed. An atomic strain is adopted to decide the positions of

a crack-tip and dislocation cores, since the atomic strain at the crack-tip and dislocation cores

take singular values. After sensing positions of the crack-tip and dislocation cores, new atom-

istic region is determined to have a certain width of atom layers between the crack-tip and the

edge of the atomistic region.

When the atomistic region is changed, some atoms and particles are annihilated and some are

created. In the case of an atom creation, which occurs when a certain position used to be

in the coarse-grained region changes to be in the atomistic region, new atoms are created with

displacements that are given by those of CG particles through the interpolation, ui =
∑

I NIiUI .

On the other hand, new particles are created with displacements given by UI =
∑

i fIiui.

Generally, fast moving cracks emit short-wavelength elastic waves from their crack-tips where

atomic bonds snap. Since such waves cannot exist in the coarse-grained region, these waves

have to be eliminated in the extra atom region. It is unknown whether the change of the atomistic

region affect the reflection or elimination of such waves. Suppose that 2D system of atoms with

Lennard-Jones (LJ) interatomic potential with parameters for Ar system. The system size is

about (Lx, Ly) = (1715Å, 1386Å). A crack of length about 500 Å and thickness of one atomic

layer is introduced. Only the area of radius about 100 Å around the crack-tip is chosen as the

atomistic region and for the surrounding area the CGP method is applied. As an initial condition,

fixed uniform tensile load is applied perpendicular to the crack by adding strain 1.0% and atomic

positions are relaxed by the velocity scaling molecular dynamics. In the crack propagation

simulation, the strain is increased with very low strain rate until the total strain reaches 1.5%.

Figure 2 shows snapshots of atomic strain fields near the crack-tip at different time. This shows

that the change of the atomistic region does not cause artificial waves and strain field around the

crack-tip stays unchanged in a steady-state crack propagation. The reason why artificial waves
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Figure 2: Snapshots of the adaptive hybrid simulation of a brittle crack propagation. Two

magnified pictures show strain fields near the crack-tip at different time.

created by the change of the atomistic region are negligibly small is because the existence of

the extra region. Created artificial waves at the edge of the extra region are eliminated during

they pass through the extra region.

4. Conclusion

A concurrent hybrid atomistic and coarse-grained-particle method with a simple coupling scheme,

called the bridging extra particles (BEP) method, is proposed. In the BEP coupling, extra atoms

and particles are placed beyond the interface and they work as a sink for short-wavelength waves

that cannot exist in another system. Since these extra atoms and particles move under Langevin-

type equation, short-wavelength waves are eliminated such as damped oscillations. Adding the

random force term with an appropriate dispersion based on the fluctuation-dissipation theorem,

finite-temperature simulations should be possible.

An algorithm that the atomistic region is adaptively changed its position following the crack-tip

and dislocations cores during the crack propagation simulation is developed. Since changes

of the atomistic region does not cause artificial waves, the present hybrid method can provide

sufficiently accurate and efficient crack propagation simulations.
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The development of an appropriate multiscale modeling framework depends on 
the choice of internal variables. In this study physically-based constitutive models 
for dislocation cell forming materials were applied to describe microstructure 
evolution in processes leading to extreme grain refinement. In these models the 
dislocation densities in the cell walls and the cell interior are used as internal 
variables. A particular version of the constitutive models developed was 
implemented in the broadly used commercial finite element software MARC via a 
specific user subroutine.  
 
Our previous investigations had indicated that this modelling approach represents 
a versatile tool for predicting grain refinement under severe plastic deformation 
(SPD) processes. In the present work, we further investigated the suitability of the 
model for describing a range of SPD processes in which a high pressure is 
imposed on a specimen in combination with a shear stress. Three case studies 
were considered. First, a High Pressure Torsion (HPT) model was used to 
calibrate the material parameters based on widely available experimental data for 
copper. Then, two recently proposed processes, namely the Cone-Cone Method 
(CCM) and the High Pressure Tube Twisting (HPTT) technique, were simulated. In 
the talk, the predicted microstructure evolution will be discussed in relation to our 
recent experimental results on copper. 
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The problem of cracks is of central importance in the science of fracture. It is 
concerned with quantitative description of the mechanical properties of solid 
systems with cracks, aiming at characterizing the resistance of materials to crack 
growth. Of particular practical interest is the crack initiation under rapid loading. 
Due to the high strain rate associated with shock waves, the problem is usually 
outside the linear elasticity regime. Problems of this type involve both atomic level 
events and continuum scale processes, and they represent many of the 
challenges in multiscale material modeling. Although such problems have been 
studied extensively using molecular dynamics (MD) models, the results are mostly 
limited to the behavior of the crack tip in the presence of an existing loading 
environment. These atomistic-based methods are unable to treat the dynamic 
loading from remote boundaries, or the interaction of the stress waves with the 
crack tip. 
 
We will present a computational model that integrates conventional methods for 
continuum models of solids, with an atomic level description – the molecular 
dynamics model. This new class of computational methods is able to treat areas 
around crack tips by explicitly modeling the atomic interactions, providing better 
precision than traditional experimental methods. Meanwhile, the integration with 
continuum models allows to simulate materials of realistic size.  
 
The coupling method starts with a domain decomposition approach. More 
specifically, the entire computational domain is divided into two types of 
subdomains: atomistic regions, in which MD models are used, and a continuum 
region, in which the elastic field is smooth and the system is modeled by a 
continuum model. At the interface, an explicit coupling condition will be used to 
provide boundary conditions for both models. Both MD and the continuum models 
are formulated based on the same set of conservations laws, represented by a 
finite volume method. This offers a consistent basis for coupling the two models. 
Another advantage is that waves with sharp wave front, e.g. shock waves, can be 
treated in this setting.  
 
We will present numerical results on the interaction of shock waves and crack tip. 
Additional results, which correlate crack growth with various types of loading 
conditions, will also be presented.  
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Abstract: Ab initio electronic structure models like density functional theory

have been widely used in a range of applications. The mathematical understanding

of these models are still sparse. In this talk, we will discuss some recent works about

the continuum limit of the electronic structure models, making connection between

density functional theory and the elasticity theory. Algorithm developed based

on the multiscale strategy enables electronic structure calculations for macroscopic

systems. This is a joint work with Weinan E.

1

92



Phase-field Modelling of Twin Boundary Motion in Magnetic Shape
Memory Alloys

Authors: Christian Mennerich1, Frank Wendler1, Marcus Jainta1, Britta Nestler1

1 Karlsruhe University of Applied Sciences, Institute of Materials and Processes (IMP),

Moltkestraße 30, 76133 Karlsruhe, Germany

ABSTRACT

Magnetic shape memory (MSM) alloys have gained major interest in the last decade because of

their excellent properties as actuators and dampers that make use of the MSM effect. In single

crystals strains of up to 10% could be observed, an effect that is often spoiled in polycrystalline

materials. Atop an existing phase-field model for phase transitions a model for the MSM effect,

i.e. for magnetically induced phase transitions, is build. This is done by extending the original

model by micromagnetic energy contributions capturing magnetostatics, magnetic exchange

and anisotropy as well as magnetoelastic effects. The resulting model is veryfied by simulating

magnetic domain wall formation and twin boundary motion induced by external magnetic fields

in single crystals, with the aim to go towards the analysis and prediction of twin boundary

motions in polycrystalline materials in 3D.

1. Introduction

Magnetic shape memory (MSM) alloys gained major interest over the last 15 years. They of-

fer fast response rates accompanied by giant elastic strains in moderate external fields (up to

1 Tesla), what makes them an excellent choice as components in actuators and dampers. Since

the first observation of the MSM effect in 1996 (see [1]), changes in length up to ten per-

cent have been observed in Ni2MnGa single crystal specimens. In polycrystalline materials,

the effect is often spoiled due to the different orientations of grains and the grain boundaries

separating them. The MSM effect, in opposition to the thermoelastic shape memory effect, is

entirely settled in the martensitic state of a material and bases on the mobility of low energetic

twin boundaries. Assuming a magnetic hard material and applying an external magnetic field, it

is energetically more advantageous to rearrange the microstructure than to pull local magnetic

moments out of preferred directions. The phase transition from one martensitic twin variant

to another is displacive and diffusionless, and the involved processes are fully reversible. Our

aim is to set up a model that allows for the simulation of magnetically induced twin boundary

evolution in magnetic hard materials in the martensitic state under the influence of an exter-

nal applied magnetic field, tending towards covering the correct dynamics in polycrystals. The

choosen approach bases on an existing phase-field model that is capable of describing phase

transitions properly. The model for the MSM effect is developed atop this phase-field model

by formulating the necessary micromagnetic energy contributions that drive the magnetically

induced phase transformations, and extending the constituting phase-field functional appropri-

ately. The equations of motion for concurrently evolving martensitic variants (phase fields),

magnetic domain walls and elastic properties are stated. We conclude by demonstrating the

applicability of our approach on selected simplified simulation scenarios.
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2. The Phase-field model and magnetoelastic extensions

The adopted general phase-field model is introduced in [2]. A main advantage of the phase-

field method is the avoidance of explicit front tracking by introducing a smoothly variing

order parameter that separates phases by a diffuse interface of finite width ǫ. The model

considers a region Ω ⊂ R
3 with N ∈ N phases, in which the order parameter φ(~x, t) =

(φ1(~x, t), . . . , φN(~x, t))T : Ω × R≥0 → [0, 1]N exists, where φα = 1 and φα = 0 characterize

the bulk and the absence of pure phase α ≤ N , respectively. The general constituting integral

Helmholtz free energy formulation is of Ginzburg-Landau type:

F =

∫

Ω

(

ǫa(φ,∇φ) +
1

ǫ
w(φ) + f(φ, c, T, ..)

)

d~x. (1)

a(φ,∇φ) and w(φ) are surface energy contributions. f(φ, c, T, ...) is the total bulk free energy

as interpolation of bulk free energies fα(c, T, ...) for every phase α, making use of a suitable

smooth interpolation function h : [0, 1] → [0, 1]. The bulk free energies depend on physical

quantities like concentration, temperature or others, and act as driving forces for the system.

Here, phases are attributed to martensitic variants. We now give the micromagnetic contribu-

tions that constitute these bulk free energies. Two fundamental simplifications are made: The

restriction to isothermal settings below the Curie temperature TCurie and below the martensitic

start temperature Tm, and the assumption that the applied external field is constant over time.

Consequently, the saturation magnetization MS ∈ R becomes a constant, and the micromag-

netic free energy is decreasing monotonically over time (cp. [3]). As additional state variables

we introduce the (normalized) vector field of spontaneous magnetization m : Ω × R≥0 → S
2

(with S
2 the unit sphere in R

3) and the displacement field u : Ω × R≥0 → R
3. Five energy

densities contribute to the magnetoelastic energy density:

f(φ,u,m) = eext(m) + edemag(m) + eexch(m) + eaniso(φ,m) + em-el(φ,u,m) (2)

= − µ0MS(Hext · m) − 1

2
µ0MS(Hdemag · m) + Aexch|∇m|2

− Kaniso

N
∑

α=1

(m · pα)2h(φα) +
1

2

N
∑

α=1

(ǫ(u) − ǫ0(m))TCα(ǫ(u) − ǫ0(m))h(φα).

eext and edemag are magnetostatic energy densities. The Zeeman energy densitiy eext describes

the interaction of the local magnetization m with an applied external magnetic field Hext, where

µ0 is the micromagnetic permeability in the vacuum. The demagnetization energy (or magne-

tostatic self energy) density edemag gives the long-range interactions between all local magnetic

moments in the domain, described in terms the of the demagnetization field Hdemag. The local

variation of the magnetizations orientation is described by the exchange gradient energy den-

sity eexch, where Aexch is the material dependent exchange stiffness constant. The micromagnetic

anistropy eaniso takes into account the dependence of the local magnetization on directions of

preferred magnetization, the so called easy axes. We restrict our considerations to the uniaxial

case, where exactly one easy axis per variant exists. Kaniso is a material dependent anisotropy

constant, and p
α ∈ S

2 the unique direction of the easy axis of variant α. The coupling of mi-

cromagnetics and elasticity is realized by considering elasticity as well as eigenstrain (or stress

free strain) contributions arising from the preceeding martensitic transformation. Here, C is the

fourth order phase dependent elastic property tensor and ǫ(u) the second order tensor of total

strain, depending on the displacement field. The total strain has to be adjusted by the eigen-

strain that interacts with local magnetizations. In general, the second order eigenstrain tensor is

given as ǫ0(m) = 1
2
mN (φ)m, with N the fourth order magnetostrictive property tensor. (The

notation assumes the commonly used Voigt notation.) We remark, that the approach is eas-

ily generalizable to make all appearing energies dependent on martensitic variants, if adequate
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ABSTRACT

A two-scale framework is presented for the failure of periodic masonry shell structures, in which

membrane-flexural couplings appear. The failure behaviour of textured heterogeneous materi-

als such as masonry is strongly influenced by their mesostructure. Their periodicity and the

quasi-brittle nature of their constituents result in complex behaviours such as damage-induced

anisotropy properties with localisation of damage, which are difficult to model by means of

macroscopic closed-form constitutive laws. A periodic computational homogenisation proce-

dure is used for the in-plane and the out-of-plane behaviour of such planar shells. The locali-

sation of damage at the structural scale is represented by means of embedded strong disconti-

nuities incorporated in the shell description. Based on the assumption of single period failure,

the behaviour of these discontinuities is extracted from the mesostructure. An acoustic tensor-

based criterion adapted to shell kinematics is used to detect the structural-scale failure and find

its orientation. For the softening mechanical response of the macroscopic discontinuities, a

new enhanced scale transition is outlined for shell failure based on an approximate energy con-

sistency argument in order to objectively upscale the energy dissipation. The corresponding

multi-scale framework results are compared to direct fine scale modelling results used as a ref-

erence for the case of masonry, showing a good agreement in terms of load bearing capacity, of

failure mechanisms and of associated energy dissipation.

1. Introduction

The formulation of macroscopic constitutive laws for the behaviour of masonry is a complex

task, due to its strongly heterogeneous microstructure which considerably influences its overall

mechanical behaviour. Due to the quasi-brittle nature of its constituents, this results in initial and

damage-induced (evolving) anisotropy properties, accompanied with localisation of damage.

In its structural use, such a material may be subjected to cracking, leading to localisation of

damage at both the structural and fine scales. Closed-form laws have therefore been developed

for equivalent anisotropic media for elastic and cracking behaviour1,2. The use of such models

in the cracking regime is however impeded by their costly identification. As a complementary

approach, the multi-scale computational strategies aim at solving this issue by deducing a ho-

mogenised response at the structural scale from a representative volume element (RVE), based

on constituents properties and averaging theorems.

2. Multi-scale modelling of thin masonry shell

Computational homogenisation approaches allow identifying homogenised continuum proper-

ties from the constituents constitutive behaviour of a heterogeneous mesostructure. This allows

the set-up of nested computational procedures in which a sample of the mesostructure is used
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to determine numerically the local macroscopic material response. The definition of such a

nested scheme essentially requires the definition of four ingredients: (i) a fine scale constitutive

description for the constituents, (ii) the definition of a representative mesostructural sample,

(iii) the choice of a coarse scale representation, and (iv) the set-up of scale transitions linking

structural and fine scale quantities.

A scale transition for homogenisation towards a Kirchhoff-Love shell behaviour was recently

proposed3. For the case of masonry, the microstructure may be represented by a unit cell on

which a strain-periodic displacement field is imposed4,3. The constituents inside the unit cell

may be modelled using any closed-form formulation. As a result, the response of a coarse scale

point under any loading program may be computed.

3. Upscaling framework for out-of-plane failure

In order to incorporate damage localisation effects at both the structural and fine scales, the

scale transition procedure has to be adapted accordingly. For in-plane loaded structures, in

which both fine and coarse scale descriptions follow similar kinematical assumptions, these

adaptations have been proposed recently with different methodologies5,6. This approach can

be extended to shell formulations, where higher order kinematical quantities such as curvatures

appear at the structural scale. This requires adaptations within the structural scale description

as well as in the scale transitions.

Any localisation enhancement at the coarse scale to represent failure requires a criterion to de-

tect localisation and to determine its orientation. However, in a computational homogenisation

procedure, the macroscopic material response is not postulated a priori but rather computed

from the material laws introduced at the microstructural level. This criterion should then be

based on computationally homogenised results, the only information available characterising

the average material behaviour. The detection of the structural scale localisation can be based on

the acoustic tensor concept extended to the shell description7. This tensor has to be constructed

based on the homogenised stiffness such that the localisation detection takes into account the

coupling of flexural and membrane effects. It can be shown that such a procedure allows to

extract mesostructurally motivated average localisation orientations, based on the non positive

definiteness of this tensor, for various coupled flexural-membrane loading paths8.

The structural scale problem is solved using the finite element method and using an embedded

strong discontinuity model9. Once structural localisation is detected, the coarse scale displace-

ment and rotation fields are enriched by jumps along a discontinuity line, the orientation of

which is deduced from the acoustic tensor-based criterion. In order to determine these addi-

tional jump fields, the weak form of equilibrium is solved together with a weak conti- nuity

condition on the stress along the discontinuity line. A material response which links the gen-

eralised stresses across the discontinuity to the jumps is therefore required to drive the discon-

tinuity. Once the embedded discontinuity is introduced, the bulk of the element is assumed to

unload elastically from the state reached at that point9.

Further to the recently proposed discontinuity approach where the material behaviour is defined

by closed-form laws9, both the bulk and discontinuity material behaviours are deduced here

from fine scale unit cell computations. A material secant stiffness is extracted from the unit

cell in which the structural localisation has just been detected in order to compute the elastic

unloading of the bulk. The material behaviour of the coarse scale discontinuity is extracted

from a further damaging unit cell, denoted as Localising Volume Element (LVE), by means of
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an enhanced upscaling procedure. This extraction requires the definition of average generalised

strains to be applied on the LVE from the coarse scale displacement and rotation jumps. An

enhanced upscaling procedure based on an approximate energy consistency has been proposed

recently for the in-plane case10 and is extended to the out-of-plane case11.

4. Comparison of multi-scale and fine scale results on structural examples

The proposed multi-scale scheme was implemented using parallel computation tools. Two

structural wall computations are performed and the results are compared to a fine scale compu-

tation used as a reference in order to challenge the periodicity and scale separation assumptions

of the computational homogenisation procedure. The results comparison is based both on the

overall response of the wall and on the obtained failure mode.

The proposed approach is illustrated for the case of a masonry wall with an opening subjected

to in-plane confined shearing. A good agreement is obtained between the full fine scale and

multi-scale computations in terms of load bearing capacity and failure mode (see Fig. 1)12.

Figure 1: Deformed configuration at the peak of the in-plane confined shearing load-

displacement response of the wall (the displacements of the wall are magnified by a factor of

200): (left) deformed configuration of the complete fine scale computation, (centre) deformed

configuration of the multi-scale computation and (right) related deformed unit cells (the dis-

placements of the cells are magnified by a factor of 50).

The case of stair-case out-of-plane failure mode propagation is also considered on a square

masonry shell subjected to out-of-plane forces (see Fig. 2). The overall response of the wall

of both the full fine scale and multi-scale computations are in good agreement. The deformed

configuration at the peak of the response is shown in Fig. 2 for both models. Furthermore,

this case also allows to show that the appearance of membrane-flexural couplings due to the

different tensile and compressive strengths of the damaging joints is well incorporated in the

homogenisation procedure and in the localisation analyses.

5. Conclusions

These results show that the multi-scale modelling yields results in good agreement with respect

to complete fine scale computations for both the limit load and the failure mode. The multi-

scale methodology proves to be a valuable tool for the investigation of masonry structures. In

particular, it allows to account for the strong coupling between the structural response and the

underlying mesostructural features of the material. Specific enhancements are however needed

in order to account properly for the consequences of the quasi-brittle nature of the constituents.
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Figure 2: Deformed configuration at the peak of the response of the wall (the displacements

of the deformed configuration are magnified by a factor of 500): (left) deformed configura-

tion of the complete fine scale computation, (centre) deformed configuration of the multi-scale

computation and (right) related deformed unit cells.
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Finite-strain elastoplasticity leads to three types of geometric 
nonlinearities. The first is due to the geometric nonlinearity of 
finite strain elasticity induced by frame indifference. The second is 
due to the multiplicative decomposition of the strain tensor in an 
elastic and a plastic part. Moreover, plastic invariance makes the 
dissipation potential geometrical  nonlinear. 
As a consequence these tensors should be treated as elements of the 
multiplicative matrix groups. 
 
As a consequence the statics of incremental problems for such model 
develop microstructure unless gradient terms are used to regularize 
the model. To describe experimentally observed microstructures, 
Hackl and Kochmann [2009] have proposed a model 
where certain classes of simple or sequential 
laminates are treated as "internal variables" in the sense general 
dissipative materials, also called generalized standard materials. 
We provide a mathematical framework to treat this model rigorously. To 
avoid formation of further microstructure we introduce a weak 
regularization forbidding these microstructures to develop further 
oscillations. 
 
We explain how the functional analysis for an existence theory can be 
adapted using ideas from metric spaces to be able to handle the underlying 
geometric nonlinearities rogorously. 
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UNDERSTANDING COUPLED MULTISCALE METHODS:

QUASICONTINUUM METHOD AS AN EXAMPLE

PINGBING MING

Abstract

We shall discuss the general strategy for the understanding of the coupled
multiscale method in solids, particularly, quasicontinuum method will be
used as an demonstrative example.

1. Introduction

A coupled macro-micro modeling approach is preferred in order to capture both

the macroscale behavior of the system and the important details of such local

events. There are many different strategies for coupling [1] and we will focus on

the domain-decomposition type coupling in this short note. Particularly we shall

consider the quasicontinuum (QC) method [17].

Quasicontinuum method is among the most successful multiscale methods for

modeling the mechanical deformation of solids. So far its main success is in mod-

eling the static properties of crystalline solids at zero temperature, even though

various attempts have been made to extend QC to modeling dynamics at finite

temperature. At the same time, QC has attracted a great deal of attention from

the numerical analysis community, since it provides the simplest example for under-

standing the algorithmic issues in coupled atomistic-continuum methods. Indeed

one main challenge in multiscale, multi-physics modeling is to understand the sta-

bility and accuracy of multi-physics algorithms. This is of particular interest for

coupled atomistic-continuum algorithms, since the nature of the continuum models

and atomistic models are quite different. Specifically, we would like to understand:

(1) whether new numerical instabilities can arise as a result of atomistic con-

tinuum coupling;

(2) whether the matching between the continuum and atomistic models causes

large error.

The second issue is particularly important: It is inevitable to introduce some error

at the interface where the atomistic and continuum models are coupled together.

The question is how large this error is and whether this error also affects the accu-

racy of the numerical solution away from the interface. We also note that Weiqing

Ren [13] has demonstrated, using examples from fluid mechanics, that new numer-

ical instabilities can arise as a result of coupling atomistic and continuum models.

QC provides the simplest example for analyzing the issues outlined above for the

following reason: at zero temperature, the atomistic model can be regarded as a

consistent discretization of the Cauchy-Born continuum model [2]. We note that the

Cauchy-Born continuum model is the right continuum limit of the atomistic model

whenever the system is in the elastic regime [6, 7]. Since QC uses the Cauchy-

Born rule in the continuum region (or the local region, in the QC terminology), the

1
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Figure 1. Error profile for the original QC solution with N = 16
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models used in the continuum and atomistic regions (or local and nonlocal regions)

are consistent. The only remaining issue is what happens at the interface when the

two models couple.

2. Explicit Examples for Ghost-force Eerror

Indeed errors are introduced by QC at the interface. The simplest and most

well-known example is the “ghost force”, i.e., forces that act on the atoms when

they are in equilibrium positions. When atoms are in equilibrium positions, the

forces acting on them should vanish. So whatever forces present is numerical error.

For the one-dimensional chain, we have studied the error caused by the ghost

force in the case when there is an external force in [10, 12]. For the case when

there is no external force and the interaction potential is harmonic and the next

nearest neighbor interaction is taken into account, the error takes an explicit form,

which allows us to see exactly how the error caused by the ghost force looks like;

see Fig. 1. Such explicit error form was firstly derived in [12], see also [4] for a

similar discussion.

For the high-dimensional case, we [3] recently obtained the explicit form of the

error caused by the ghost-force. They consider a square lattice and the interaction

potential is harmonic. In this case, it is not enough to taken into account the

first and the second neighborhood interaction, since there is no ghost-force in this

set-up. Instead they consider the first and the third interaction. Their results are

summarized in the following theorem, and we refer to [3] for more details.

Theorem 2.1. The error in the local region (continuum model) is

y(m,n) = −2ε

N

2N−1
∑

k=1

k is odd

Qk

Pkrk − Rkpk

sinh[(M + m)αk]

sinh[(M − 1)αk]
ρk cot

kπ

4N
sin

kπ

2N
(n + N),

where

Qk = (rk + 6pk)(5F0 − F1̄) − (Rk + 6Pk)(5f0 + f1̄).
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The error in the nonlocal region (atomistic model) is

y(m,n) = −2ε

N

2N−1
∑

k=1,k odd

Qm,k

Pkrk − Rkpk

cot
kπ

4N
sin

kπ

2N
(n + N),

where
Qm,k = (−1)mFm(rk + 6pk) − fm(Rk + 6Pk),

and


















Pk = [−2F1̄ + F1 − ρk(−F1̄ + 5F0)](γk, δk), Rk = (3F0 + 9F1̄ + F2̄ − 5F1)(γk, δk),

pk = [2f1̄ − f1 − ρk(f1̄ + 5f0)](γk, δk), rk = (3f0 − 9f1̄ + f2̄ + 5f1)(γk, δk),

ρk =
sinh[(M − 1)αk]

5 sinh[Mαk] + sinh[(M − 1)αk]

with






Fm(γ, δ) =
sinh[(M + 1 − m)γ] + sinh[(M − m)γ] cosh δ − (−1)m cosh[(M − m)δ] sinh γ

cosh γ + cosh δ
,

fm(γ, δ) = Fm(δ, γ),

and














cosh γk =
1 +

√
25 + 8λk

4
, cosh δk =

−1 +
√

25 + 8λk

4
,

cosh αk = 1 +
λk

5
, λk = 2 sin2

kπ

4N
.

Based on the above equations, we estimate the error of the solution and its

discrete derivative in [3]. In particular, we prove that the the width of the interfacial

layer is O(ε|ln ε|) in the sense that the error for the discrete derivative of the solution

is O(ε) outside the interfacial layer.

It is demonstrated that the ghost-force may lead to large errors, in particular

for the deformation gradient. Such error may push the system to the basin of

attraction of another nearby minimum. Physically, this suggests that it may cause

unphysical dislocation nucleation around the tip of a propagating crack [19], see

also [14, 15] for the related discussion.

3. Error Analysis

For one-dimensional problem, the accuracy of the quasicontinuum method is

analyzed using a series of models with increasing complexity [12], we refer to [4]

for the progress of other groups. We view the interface as as an internal numerical

boundary where two different numerical schemes meet, both are consistent with the

underlying PDE, in this case the Cauchy-Born elasticity model. We have shown

in [12] and a follow-up paper [11] that the accuracy and stability issues in QC can be

understood following standard practices in classical numerical analysis: we calculate

the local truncation error (LTE) of the different variants of QC. We will see that

even though the LTEs for the ghost-force removal procedures are all O(1), they

are of divergence form and are actually O(ε) in a weak norm, which is actually the

so-called Spijker norm appeared in the homogeneous difference schemes [18, 16, 9].

We also study the stability issues and give an example of a geometrically consistent

scheme that is unstable. We then show, following the strategies presented in [6],

that the stability condition and the LTE analysis implies that ghost-force removal

procedures recover uniform first order accuracy. The ghost-force removal strategy
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includes the force-based QC [14], the quasinonlocal QC [15] and the geometrically

consistent scheme proposed by E, Lu and Yang [5]. The details may be found

in [10, 8, 12].

So far almost all works are confined to one-dimensional problem. The extension

to higher-dimensional problem is possible by following the above strategy. For

example, we have proved in [11] that the quasinonlocal QC converges with first

order accuracy in two-dimensional problem with a planar interface. Actually, the

main technical points for the extension to high dimensional problem with planar

interface have been sketched in [12]. However, this leaves out the situations when

the interface has corners. At this point, very little is known in that case.
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18. A.N. Tikhonov and A.A. Samarskǐi, Homogeneous difference schemes on nonuniform nets,

Zh. Vychisl. Mat. i Mat. Fiz., 2(1962), 812–832; English tranl. in U.S.S.R. Comput. Math.

and Math. Phys. 2(1962), 927–953.
19. Jerry Z. Yang and X. Li, Comparative study of boundary conditions for molecular dynamics

simulations of solids at low temperature, Phys. Rev. B, 73 (2006), 224111.

LSEC, Institute of Computational Mathematics and Scientific/Engineering Comput-

ing, AMSS, Chinese Academy of Sciences, No. 55 Zhong-Guan-Cun East Road, Beijing,
100190, People’s Republic of China

E-mail address: mpb@lsec.cc.ac.cn

105



 Advancement of the coarse-grained particle method  

for finite temperature solids 
 

 

Takahide Nakamura,
1, 2

 Ryo Kobayashi,
1, 2

 and Shuji Ogata
1,2

 

 
1
Department of Scientific and Engineering Simulation, Graduate School of Engineering, 

Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan  

 
2
CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 

332-0012, Japan 

 

 

ABSTRACT 

 

The coarse-grained particle (CGP) method [1,2] has been proposed for crystalline 

solids. In the CGP method, the total energy of the CGP system is defined as the statistical 

ensemble average of the atomic energy with the weighting function in the phonon 

approximation. Though the method well reproduces the phonon spectrum, it substantially 

underestimates the deformation energy. In this paper, we optimize the weighting function 

from both points of the phonon spectrum and deformation energy. We then incorporate the 

atomic anharmonicity at finite temperatures that is ignored in the original formulation of the 

CGP method.  

 

 

1. Introduction 

 

 We might state that there exists almost no limitation in size for the classical simulation 

of atoms using O N( ) algorithms on modern parallel machines. However the time step cannot 

be changed and hence the total simulation time still remains small. It is useful to reduce 

computational costs and to increase the time step by coarse-graining the atomic system. The 

coarse-grained particle (CGP) method [1] has been proposed for crystalline solids and we 

have developed it for more accuracy [2]. 

 

 

2. The coarse-grained particle method  

 

A CGP represents a group of atoms under constraint U = wu  with the displacements 

u and U for the atoms and CGP’s, respectively. A similar constraint is applied also to their 

velocities. Here w is a N
CGP

" N
atom

 matrix and is called the weighting function. Under those 

constraints, the total energy of the CGP system is calculated as the ensemble average of the 

atomic energy. That is,  

ECGP =
1

ZCGP

dud ˙ u Eatom exp "
Eatom

kBT

# 

$ 
% 

& 

' 
( ) * U"wu( )* ˙ U "w ˙ u ( )     (1) 

with the delta function "(x). 

Taking the harmonic approximation for the inter-atomic interaction energy (i.e. 

E
atom

=
1

2
˙ u 

T
m ˙ u +

1

2
u

T
Du), Eqn. (1) can be rewritten as 

 ECGP =
1

2

˙ U 
T
MU+

1

2
U

T
KU+ 3k

B
T N

atom
" N

CGP( ) .    (2) 
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Here K = wD"1
w
T( )

"1

, M = wm
"1
w
T( )

"1

, Dij =
" 2V

atom

"ri"rj
, and mij = matom

"ij . We may simulate 

coarse-grained dynamics by taking Eqn. (2) as the Hamiltonian.  

Merits of the CGP method are: First, the CGP interaction can be determined from the 

first principles. It is possible to coarse-grain any atomic system if its inter-atomic potential is 

available. Second, all the atomic phonons are included in the total energy of the CGP system 

through the ensemble average. That makes the CGP method more suitable to a situation in 

which the coarse-graining level is not high than other continuum-based methods. There are, 

however, some demerits: The shape of weighting function is not optimized. The atomic 

anharmonicity and finite temperature effects are neglected because of the harmonic 

approximation of the inter-atomic interaction. Besides, since the matrix-inverse calculation 

requires high computational cost, the periodic boundary condition must be applied; it means 

that the CGP method cannot be used for inhomogeneous systems.  

 

 

3. The optimization of the weighting function 

 

In the well-known finite-element method, the constraint is u =NU  with the 

interpolation function N. On the other hand, the constraint of the CGP method is U = wu. 

When we set w = NNT

[ ]
"1

N  as the matrix-inverse of N, we call it “original w”. Using the 

original w, the phonon dispersion relation of the CGP system corresponds well to that of the 

atomic one. We dare state that it is the only reason to use the original w. Is it safe to use the 

original w? Another important measure of judgment is the correctness of the deformation 

energy. We therefore compare the deformation energy between the atomic and CGP systems 

by applying the same displacements 

U
I

(" ) #exp $
R

0 $ R
I( )

2

" 2

% 

& 

' 
' 

( 

) 

* 
* 
   and   u

i

(" ) #exp $
r

0 $ r
i( )

2

" 2

% 

& 

' 
' 

( 

) 

* 
* 
  .   (3) 

Here R0 = r0  is the same peak-position of the displacements. 

As a test, we consider the system of 55 CGP’s that is obtained by coarse-graining a 

spring-beads system composed of 550 atoms (the spring constant k
atom

=1; mass m
atom

=1; 

atomic interval a
atom

=1) under the periodic boundary condition in 1-dimention．The CGP 

interval a
CGP

=10. We call the situation “CG10” since a single CGP represents 10 atoms. As 

Fig. 2 (right) shows, the CGP deformation-energy with the original w deviates substantially 

from the atomic one at small "  (i.e., the spiky displacement). We now optimize the weighting 

function so that the deviation is minimized. We note that the range of "  shown in Fig. 2 

(right) is so determined that the calculated deformation energies for various R0(= r0)  take on 

the same value in the range.  In the optimization we assume that the weighting function is 

linear with respect to the distance from a CGP between the two neighboring CGP’s. The 

original and optimized w are shown in Fig. 1. Correspondingly, both the phonon dispersion 

relation and the deformation energy are shown in Fig. 2. By making the absolute value of 

original w smaller, we find that the deformation energy of the CGP system gets closer to that 

of the atomic one. On the other hand, the phonon dispersion relation is almost the same 

between the original and optimized w. It may be because the dependence of M  on the shape 

of the weighting function is similar to that of K .  

To summarize, it is enough to use the original w if one is interested in the correctness 

of the phonon-dispersion relation only. The optimized w should be used if one is interested in 

the correctness of the (spiky) deformation energy also. 
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Figure 1. The original weighting function and the optimized weighting function for CG10. 

 

       
Figure 2. The dispersion relation (left) and the deformation energy (right) of CG10. 

The displacement is Eqn. (3) for the deformation energy. 

 

 

4. The finite temperature effects 

 

In the CGP method, the partition function Z
CGP

 is defined. Therefore the forces on the 

CGP’s at finite temperatures can be calculated as the derivative of the free energy. The I-th 

CGP force is then expressed as 

F
CGP, I =

1

"UI

u j # u j( ) fatom,  j
T, V, U+"U

j

atom

$ # u j # u j( ) fatom,  j
T, V, U

j

atom

$
% 
& 
' 

( ' 

)
*
'

+'
   . (4) 

The CGP forces can be determined by calculating Eqn. (4) with the Monte Carlo method. The 

force calculation can be performed locally since the averaging is done for the forces and 

displacements of those atoms relating to the I-th CGP only. Such a locality helps to realize 

efficient parallel-calculations of the forces; hence, the application to an inhomogeneous 

system is possible. 

 As a test, we consider the system of 25 CGP’s that is obtained by coarse-graining 1250 

Ar atoms (Lennard-Jones pot.) under the periodic boundary condition in 2-dimention. We 

calculate the force on the 1st CGP through Eqn. (2) and Eqn. (4) when it is displaced by U1x 

at  T=1K or 30K (Fig. 3). Note that the weighting function is not optimized and the thermal 

expansion is not considered for simplicity. At T=1K and small displacement, the two results 

are almost the same. The effect of anharmonicity is substantial when U1x is larger than 

0.2a
CGP

 at T=1K. At T=30K both anharmonicity and finite temperature effect are observed. 
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At T=30K with small displacement, since our Monte Carlo sampling is not enough, thermal 

fluctuation makes the significant difference between the two results. 

 

 

 
Figure 3. The force of the 1st CGP calculated with various methods. 

 

 As explained above, it is now possible to calculate the CGP forces including atomic 

anharmonicity and finite temperature effects. Making a table of the CGP force at several 

displacements and temperatures in advance can simulate the coarse-grained dynamics. The 

simulation runs in this direction are in progress. 
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ABSTRACT 

 
The lithium (Li)-graphite intercalation compounds are put to practical use as a negative 

electrode of the Li-ion battery. In this material, it is important to understand not only the static 

electronic structure but also the dynamics of Li simultaneously. We apply originally  

developed hybrid quantum (QM)-classical (CL) simulation code to analyze diffusion 

processes of the Li-graphite intercalation compound. The region including the inserted Li and  

neighboring C atoms is treated with electronic state by the real space density-functional 

theory (DFT), and this region is embedded in a CL system of the C atoms of graphite based 

on an empirical interaction model. For inter-layer interaction of graphite, an atomic potential 

model based on Lennard-Jones potential is originally constructed and added in a CL 

molecular dynamics calculation of the whole system. Buffered cluster method is adopted to 

couple the QM and CL boundary. The valence electron density of Li obtained by DFT 

calculation is almost zero and the Li in graphite layers is considered as Li cation (Li
+
). The 

QM region is adjusted to the movement of Li. The diffusion coefficient calculated by the 

mean-square-displacement of Li atom in the present hybrid dynamics is in good agreement 

with experimental one.  

 

 

1. Introduction 
 

Graphite forms intercalation compounds with some metals or small molecules inserted 

between its layers. The lithium (Li)-graphite intercalation compound is put to practical use as 

a negative electrode of a Li-ion battery. In this type of battery, the Li ions can be shuttled 

between the positive and negative electrode through the non-aqueous electrolyte and separator 

diaphragm. Basically, the charge-discharge reactions of Li-ion batteries involve the   

migration of Li ions in the electrode or electrolyte materials, the charge transfer at their  

insertion into (or extraction from) the host electrodes, and the structural changes of electrodes.  

The transport properties of Li in the graphite layers especially affect the power performance 

of Li-ion batteries, and the knowledge of diffusion process is required for the design and 

optimization of Li-ion batteries. In order to understand the mechanism of Li diffusion in more 

detail, it is essential to clarify the overall relation between the bonding nature of Li and C 

atoms of the graphite and its structural change. From the theoretical point of view, the 

coupled calculation should be progressed in focusing on not only the static properties such as 

the electronic structure on the Li-graphite intercalation compounds but also the dynamics of 

Li simultaneously.  
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Generally, the classical molecular dynamics (MD) simulation based on an empirical atomic 

interaction potential model for large systems are enabled by using an abundance of  computer 

resources, but cannot handle the chemical reaction such as the formation or scission of 

chemical bonds. On the other hand, computational efficiency of the first-principles MD 

technique which treats not only electronic states but also time evolution for atoms is greatly 

promoted, but a calculation scale is still limited. Further enhancement of the performance of 

computer is desirable to apply this method to the system of real scale. Following such a 

situation, hybrid quantum (QM)-classical (CL) simulation schemes attract great interest as 

one of the calculation method aiming at both large-scale and high accuracy. In this scheme, 

the reaction region where the electronic structure should be defined is treated by a highly 

accurate calculation technique such as the density functional theory (DFT), and this region is 

embedded in a CL system of atoms based on an empirical interaction model. It is expected 

that we can simulate the realistic large-scale system reproduced the physical phenomenon 

with our interests by using hybrid scheme.  

In this study, we apply originally developed hybrid QM-CL simulation code to analyze 

diffusion process of the Li-graphite intercalation compounds. The region including the 

inserted Li and neighboring C atoms is treated with electronic state by the real space DFT. On 

the other hand, the classical MD method using empirical interatomic potential is provided to 

the movement of the rest C atoms of graphite. Buffered cluster method [1] is applied for 

coupling of the QM and CL region. 

In Sec. 2, we describe the details of the calculation method using in this study. The results of 

the electronic state and the diffusion process of the Li in graphite by hybrid QM-CL 

simulation on Li-graphite intercalation compound are shown in Sec. 3.  

 

 

2. Calculation Method 
 

2.1 Buffered Cluster Method 

 

In the hybrid QM-CL simulation, the atomic bond is cut at the QM-CL boundary and 

dangling bond forms. As for this dangling bond, its influence on electronic state or bonding 

distance of the atoms in QM region should be removed. The link-atom method that uses 

hydrogen atoms for termination of the QM atoms is usually applied to couple the QM-CL 

boundary. By using link-atom method, however, there is the case that influence of the surface 

reconstruction with the relaxation of the boundary atom extends to the atoms of whole system 

and a large distortion from the original stable structure is produced. In this study, we adopt the 

buffered cluster method (BCM) [1], which requires no link-atoms and is more precise and a 

general-purpose model. In the BCM, additional atoms called buffer atoms are put to terminate 

the dangling bond of QM atoms at QM-CL boundaries. The positions of the buffer atoms are 

adjusted so as to minimize the potential energy under the constraint of fixing the position of 

QM atoms for CL calculation of the QM region. In the QM calculation, the positions of the 

buffer atoms are not relaxed. Therefore various surface reconstructions of the QM cluster 

region are suppressed in the BCM.  

 

2.2 Quantum mechanical calculation 

 

For the QM calculation, we apply the real space DFT which is easy to accomplish the parallel 

computation and can set boundary condition arbitrarily. The details of the algorithm are 

described in Refs.[2,3, and 4]. Troullier-Martins type normconserving pseudopotentials [5] 

are used for interaction with electrons and the nucleus (ions) and only valence electrons are 

considered. The generalized gradient approximation (GGA) formula introduced by Perdew, 

Burke, and Ernzerhof [6] is applied to the exchange-correlation energy term. The Kohn-Sham 
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orbitals and Hartree potential are represented with a value on the Cartesian mesh points in real 

space coordinates. The second order derivatives of orbitals are approximated by the fourth-

order finite-difference method [7]. Data on the mesh points are divided in the small domain 

and stored every computation node in order to calculate on a parallel computation fast. The 

multi-grid method [8] is employed for acceleration of convergence of the long-wavelength 

components of the wave function on the mesh points. The grid spacing, h, is set to be 0.55 a.u. 

This is converted into the cutoff energy for plane waves to expand the wave functions of 

(ʌ/h)
2
 ~33Ry. In addition, the dense grid spacing (h/3) around atoms is used for the rapidly 

varying pseudopotentials.  

To avoid increasing of the computational cost in the case of a large QM region, the order-N 

computational technique adopted the approach of the divide and conquer method is developed.  

Here we introduce the Kohn-Sham Hamiltonian added the interaction between the regions as  

corrections for a high degree of accuracy, which is provided by performing a derivative of 

total energy of all system with respect to the charge density of each region.  

 

2.3 Classical molecular dynamics 

 

The classical MD calculation is performed under the periodic boundary condition for whole 

system and with the Velocity Verlet algorithm to integrate Newton's equations of motion. 

Brenner type [9] of interatomic potential for C atoms of graphite is provided. In the Brenner 

type potential, the cut-off distance of the interaction is set to be 2.0ǖ. Although only the 

interaction between the nearest neighbors of atom within basal planes is considered, the inter-

layer interaction is not taken in. Therefore following atomic potential model Vvdw is originally 

constructed and added in a classical MD calculation of the whole system; 

 

  .   (1) 

 

The basic form of this model is Lennard-Jones potential, and r shows a distance between two 

atoms in different layers.  f(r) is a cut-off function of the suitable form so that a value at a 

long distance smoothly becomes zero. We introduce parameter Z which expresses a difference 

of AA- and AB- stacking structure, and g(Z) of AA-stacking is smaller than that of AB-type.  

 

 

3. Results 
 

Firstly, we set QM regions of various shapes and sizes which are considerably important in 

calculation for the Li-graphite intercalation compound. We confirm that the crystal structure 

is sufficiently stable and there is no unreasonable distortion in the QM-CL boundary.  

Furthermore, we check that the hybrid QM-CL simulation adopted in this study gives good 

convergence of total energy of the QM-CL hybrid system during time evolution.  

Next, we show the charge density distribution of a valence electron provided by the QM 

calculation in Fig.1. The bonding nature between Li-C which is not considered in the classical 

MD calculation is able to be known by setting QM region including Li atom. In addition, 

since the valence electron density around the Li atom becomes almost zero, the Li has 

positive charge and the C atoms of graphite have negative charge as the result of charge 

transfer form Li to C atoms. 

 

 

 

 

 

 

     )()(4)(
612
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Figure 1. The valence charge-density distribution around the 

Li atom. The large black, gray and small black spheres 

indicate Li, C and quantum-calculated C atoms, respectively.
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It is necessary to adapt a QM region following the movement of the Li so that the diffusion 

process of Li in graphite is investigated by the hybrid calculation. Therefore, we examine  

desirable size of QM region in which so that the forces on the C atoms are smoothly 

connected at the time of the renewal of the QM region. As a result, about 24 C atoms in each 

top and bottom of the Li atom should be set as the QM region in order to get rid of influence 

with the renewal of the QM region.  

A snapshot of Li diffusion process provided from a hybrid calculation is depicted in Fig. 2. 

The layer where Li is inserted in is set to be AA-stacking structure, and other layers are set to 

be AB-stacking. The motion of Li atom is tempted by that of the graphite C atoms, and tends 

to become slow when the movement of the C atoms calms down. The diffusion coefficient 

calculated by the mean-square-displacement of Li atom in the present hybrid dynamics is 7  

10
-5

 cm
2
/sec, which is in good agreement with experimental one reported the values of order 

of 10
-5

 cm
2
/sec[10] for the dilute stage 1 phase. In the case that we do not consider the inter-

layer interaction of graphite, the calculated diffusion coefficient is ten times larger than that  

with the inter-layer interaction, so it is confirmed that the effect of the inter-layer interaction 

is important for the diffusion process in the Li-graphite intercalation compound.  
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Figure 2. The snapshot in the Li diffusion process by the hybrid calculation. The large black, gray 

and small black spheres indicate Li, C and QM-calculated C atoms, respectively. The line expresses 

the trajectory of the Li atom. (a) Top view. (b) Side view. The letters of ’A’ or ’B’ denote the 

stacking structure of graphite.  
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Low energy equilibria of crystalline materials are typically characterised by 
localized defects that interact with their environment through long-range elastic 
fields. By coupling atomistic models of the defects with continuum models for the 
elastic far field one can, in principle, obtain models with near-atomistic accuracy at 
significantly reduced computational cost. However, several pitfalls need to be 
overcome to find a reliable coupling mechanism.
Possibly the most widely discussed among these pitfalls are the so-called “ghost 
forces” that typically arise in energy-based atomistic/continuum coupling 
mechanisms. In this talk I will discuss the construction and analysis of energy-
based atomistic/continuum coupling methods with and without ghost forces, and 
particularly focus on understanding the resulting model errors. To this end I will 
first review some results on one-dimensional model problems and then describe 
some recent developments in higher dimensions. Using a new notion of “atomistic 
stress” I will show that, in 1D, absence of ghost forces does imply “high accuracy” 
of the coupling scheme but that in 2D/3D this is less clear. 
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ABSTRACT

This contribution deals with the numerical simulation of dislocation dynamics, their interaction,

merging and other changes in the dislocation topology. The glide dislocations are represented by

parametrically described curves moving in gliding planes. The simulation model is based on the

numerical solution of the dislocation motion law belonging to the class of curvature driven curve

dynamics. Mutual forces between dislocations are incorporated in the model. We focus on the

simulation of the cross-slip of two dislocation curves where each curve evolves in a different

gliding plane and after applying certain stress, the curves may merge. The simulation of the

Frank-Read source of dislocations which describes how new dislocations are created is also

presented. Merging and splitting of multiple (more than two) dislocation curves in persistent

slip bands and their interactions in channels of the bands are also simulated.

1. Introduction

The dislocations are defined as irregularities or errors in crystal structure of the material. The

presence of dislocations strongly influences many of material properties. Plastic deformation

in crystalline solids is carried by dislocations. Theoretical description of dislocations is widely

provided in literature such as5,6,11. Dislocation is a line defect of the crystalline lattice. Along

the dislocation curve the regularity of the crystallographic arrangement of atoms is disturbed.

The dislocation can be represented by a curve closed inside the crystal or by a curve ending

on the surface of the crystal. At low homologous temperatures the dislocations can move only

along crystallographic planes (gliding planes) with the highest density of atoms. The motion

results in mutual slipping of neighboring parts of the crystal along the gliding planes.

This justifies the importance of developing suitable mathematical models10,13,2,7. From the

mathematical point of view, the dislocations can be represented by smooth closed or open plane

curves which evolve in time. Their motion is two-dimensional as they move in glide planes.

The evolving curves can be mathematically described in several ways. One possibility is to use

the level-set method 12,15,4, where the curve is defined by the zero level of some surface function.

One can also use the phase-field method 1.

2. Dislocations and mean curvature flow

The interaction of dislocations and bulk elastic field can be approximately described using the

curvature flow as follows (see14). We consider perfect dislocation curves with the Burgers

vector ~b = (b; 0; 0) oriented in the x-direction of the x,y,z coordinate system. The discloation

curve motion � is located in a glide plane, in our case in the xz-plane. The glide of dislocation is
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governed by the relaxation law in the form of the mean curvature flow equation in the direction

of the normal vector Bv = L� + b�app; (1)

where B is a drag coefficient, and v(x; t) is the normal velocity of a dislocation at x 2 �
and time t. The term L� represents self-force expressed in the line tension approximation as the

product of the line tension L and local curvature �(x; t). The term �app represents the local shear

stress acting on the dislocation segment produced by the bulk elastic field. In our simulations,

we consider “stress controlled regime” where the applied stress in the channel is kept uniform.

This is an upper bound limit case. The other limiting case is “strain controlled regime” as

described in7. The applied stress �app is the same in every point of the line and for numerical

computations we use �app = onst.
3. Parametric description

The motion law (1) in the case of dislocation dynamics is treated by parametrization where the

planar curve �(t) is described by a smooth time-dependent vector function X : S � I ! R2 ;
where S = [0; 1℄ is a fixed interval for the curve parameter and I = [0; T ℄ is the time interval.

The curve �(t) is then given as the set �(t) = fX(u; t) = (X1(u; t); X2(u; t)); u 2 Sg:
The evolution law (1) is transformed into the parametric form as follows. The unit tangential

vector ~T is defined as ~T = �uX=j�uXj. The unit normal vector ~N is perpendicular to the

tangential vector and ~N � ~T = 0 holds. The curvature � is defined as� = �uX?j�uXj � �uuXj�uXj2 = ~N � �uuXj�uXj2 ;
where X? is a vector perpendicular to X . The normal velocity v is defined as the time derivative

of X projected into the normal direction, v = �tX � �uX?=j�uXj: The equation (1) can now be

written as B�tX � �uX?j�uXj = L �uuXj�uXj2 � �uX?j�uXj + b�app;
which holds provided the vectorial evolution law is satisfiedB�tX = L �uuXj�uXj2 + b�app�uX?j�uXj : (2)

This equation is accompanied by the periodic boundary conditions for closed curves, or by

fixed-end boundary condition for open curves, and by the initial condition. These conditions

are considered similarly as in3. For long time computations with time and space variable force,

the algorithm for curvature adjusted tangential velocity is used. Details are described in16. To

incorporate a tangential redistribution, a tangential term � has to be added to the equation (2).B�tX = L �uuXj�uXj2 + L� �uXj�uXj + b�app; �uX?j�uXj : (3)

For numerical approximation we consider a regularized form of (3). The equation is then solved

by means of matrix factorization. Since there are two components of X , two linear systems are

solved in each timestep.
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4. Application in dislocation dynamics

Dislocation curves as defects in material evolve in time. The dislocation evolution history

contains shape changes of open curves, closing of open dislocation curves up to collision of

dipolar loops (see11). Interaction of dislocation curves and dipolar loops has been studied, e.g.,

in10,7. Our numerical simulations were performed under the following set of parameters:

Burgers vector magnitude b = 0:25 nm
Line tension L = 2 nN
Drag coefficient B = 1:0 � 10�5 Pa � s
Applied stress �app = 40 MPa

(a) t = 0:25 s (b) t = 0:26 s (c) t = 0:29 s

Figure 1: Frank-Read source, �app = 40 MPa, t 2 (0; 0:29), curve discretized by M = 400
nodes.

The example in Fig. 1 shows the simulation of the Frank-Read mechanism (see5,11) which

describes how new dislocation loops are created. The open dislocation curve is fixed at [-

150 nm, 0 nm] and [150 nm, 0 nm], and is forced to evolve under the applied stress �app =40 MPa. The evolution continues until it touches itself. At this moment, the curve splits into

two parts, i.e., the dipolar loop and the dislocation line. The loop continues in expansion. The

dislocation line will again undergo the same process. The Frank-Read source cannot generate

unlimited number of dislocation loops because new loops interact with each other and slow

down the source. The source can usually generate about 300 or 400 of dipolar loops. Parameters

of the simulation are t 2 (0; 0:29), M = 400.

5. Conclusion

The simulation of dislocation dynamics is important in practice as dislocations affect many

material properties. Dislocation dynamics can be mathematically modelled by the mean cur-

vature flow. We presented a method based on a parametric approach. We applied the model

to situations similar to the real context including a mechanism of creating new dislocations

(i.e., Frank-Read source, cross-slip, etc.). The scheme had to be improved by an algorithm for

tangential redistribution of points and by an algorithm for topological changes for parametric

model.
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This talk revisits some of the concepts put forward by Eshelby in a landmark 
paper [1] to address dynamic dislocation problems. I will first present the derivation 
by means of Mura’s eigenstrain method, of dynamic generalizations of the Peierls-
Nabarro equation for dislocations cores of screw or edge dislocations. The 
resulting equations are of integrodifferential nature, with a nonlocal kernel in space 
and time. That for the edge involves in addition a convolution with the second 
spatial derivative of the displacement jump function. These equations correctly 
reduce, in the stationary limit, to Weertman’s equations that extend the static 
Peierls-Nabarro model to finite constant velocities [2]. 

Next, building on another idea in Ref. [1], these dynamic core equations are 
used to derive a dynamic equation of motion for screw and edges, that constitutes 
the rigorous counterpart of an approximate equation of motion recently proposed 
for moderate velocities by Pillon et al. [3] on a phenomenological basis. The new 
equation, of simple structure, is non-local in time and has a relatively transparent 
structure, solely determined by known energy functions computed at constant 
velocity. It encompasses subsonic and transonic velocity regimes, accelerated or 
not. In special limits, known results are retrieved, including Rosakis’ Model 1 for 
the equation of motion of a stationary dislocation with viscous drag [4]. Among 
new results, the frequency-dependent mass of an edge dislocation oscillating at 
moderate velocity is obtained while that of the screw dislocation, known already, is 
retrieved [5]. 
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Sampling rare events in complex, high dimensional systems, such as crystal 
nucleation, protein folding and chemical reactions, remains a challenge for 
computational studies.  Employing regular all-atom molecular dynamics (MD) 
simulations with a time step of a few femtoseconds becomes quickly unfeasible as 
the system tends to spend most of the time in a stable state hardly sampling the 
transition barrier regions of the phase space.  Yet, these rare events dominate the 
dynamical behaviour over an extended time scale. 
 
Among other approaches, transition path sampling (TPS) provides a possibility to 
explore transitions between stable states in rare event systems.  One of the key 
advantages in TPS is that an a priori definition of a reaction coordinate is not 
required.  In addition, since the dynamics used in TPS correspond to the actual 
underlying physical dynamics, the true kinetic mechanism is sampled.  Transition 
interface sampling (TIS), a variant of TPS, has been developed to improve the 
calculation of rate constants by introducing a number of interfaces along a certain 
order parameter, through which the positive effective flux can be measured.   
 
Here we introduce a reweighting scheme for the path ensembles within the TIS 
framework.  Once the sampling has been performed in the biased TIS ensemble, 
the reweighting allows for the analysis of free energy landscapes and committor 
projections in an arbitrary order parameter space.  In addition we suggest that the 
reweighted path ensemble can be used to optimize possible non-linear reaction 
coordinates. 
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We discuss the heterogeneous multiscale method framework for multiscale 
problems. As an application we consider the wave equation in a medium with 
a rapidly varying speed of propagation. We construct a multiscale scheme 
which can compute the correct coarse behavior of wave pulses traveling in 
the medium, at a computational cost essentially independent of the size of 
the small scale variations. This is verified by theoretical results and 
numerical examples. We also consider the long time case where macroscopic 
dispersive effects originating from the microstructure appear. 
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