ONLINE-VERANSTALTUNG

Data-based Estimation of Cable Bundle Stiffness

Abschlusskolloquium des Fraunhofer-Konsortiums »UrWerk« zur Entwicklung von unternehmensspezifischen Werkstoff(system)-Datenräumen

Moderation Dr. Michael Luke Projektleiter »UrWerk« Geschäftsfeldleiter »Bauteilsicherheit und Leichtbau« am Fraunhofer-Institut für Werkstoffmechanik IWM

24.November 2022

MaVo UrWerk - Unternehmensspezifische Werkstoff(system)-Datenräume zur beschleunigten Produktentwicklung

DATA-BASED ESTIMATION OF CABLE BUNDLE STIFFNESSES

Lilli Burger, Vanessa Dörlich, Fabio Schneider, Joachim Linn, Michael Burger

Abschluss Kolloquium – 24. November 2022

Data-based estimation of cable bundle stiffnesses

Agenda

- Data based prediction of effective bundle stiffnesses
 - Introduction of Gaussian Process Regression
 - Model setup
- Validation with bundles from automotive application
- Conclusion and Outlook

Gaussian Process Regression

Data-based approach

Dataset

$$D = \{ (\boldsymbol{X}, \boldsymbol{y}) \}, \qquad \boldsymbol{X} = (x_1, \dots, x_N)^T \in \mathbb{R}^{N \times d}, \qquad \boldsymbol{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_N \end{pmatrix}$$

Assumption

$$y_i = f(x_i) + \varepsilon, \qquad \varepsilon \sim N(0, \sigma_n^2)$$

Define function f as a **Gaussian Process** with given mean function *m* and covariance function *k*

 $f \sim GP(m, k)$

Prediction Task

find $y^* = f(x^*)$ for a new datapoint x^*

Gaussian Process Regression

Data-based approach

Conditional distribution can be computed analytically:

$$p(y^*|x^*, X, y) = N(m(x_*) + K_*(K + \sigma_n^2 I)^{-1}(y - M_X), K_{**} - K_*(K + \sigma_n^2 I)^{-1}K_*^T)$$

Key prediction equations

Prediction for y_* is the mean value of the conditional distribution

 $y^* = m(\mathbf{x}^*) + K_*(K + \sigma_n^2 I)^{-1}(y - M_X)$

Prediction variance (uncertainty quantification)

$$\sigma_*^2 = K_{**} - K_* (K + \sigma_n^2 I)^{-1} K_*^T$$

Data-based estimation of effective cable bundle stiffnesses

Gaussian Process Regression

Data-based estimation of effective cable bundle stiffnesses

Gaussian Process Regression

Estimation of effective cable bundle stiffnesses

Gaussian Process Regression

- Probabilistic model described by kernel and mean function
- Define process parameter with training step
- Kernel scale parameters for rational quadratic kernel function k
- Parameter β for linear/ quadratic mean function m
- Noise standard deviation σ_n

d: number of predictors

Key prediction equations

Prediction for y_* is the mean value of the conditional distribution

$$y^* = m(\mathbf{x}^*) + K_*(K + \sigma_n^2 I)^{-1}(y - M_X)$$

Prediction variance $\sigma_*^2 = K_{**} - K_* (K + \sigma_n^2 I)^{-1} K_*^T$

Prediction of effective cable bundle stiffnesses

Preliminary work

- Machine learning approach suitable for application with few data availa
- Good results expected for bundles within training data base
- Different analysis steps made (Feature tests, sensitivity analysis, differen

Academic bundles

- Effective bending stiffnesses
- Training with 80% / test with 20% of the data base

Academic bundles • Effective

- torsional stiffnesses
- Training with 80% / test with 20% of the data base

Random bundles

- Eff. bending and torsional stiffnesses
- Training with academic bundles
- Test with random bundles

Bundle bending stiffness – fully taped random bundles

Bundle no.

Fraunhofer

ITWM

🖉 Fraunhofer 🛛 Fraunhofer

IWM

Prediction of effective cable bundle stiffnesses

Preliminary work

- Probabilistic model, with point estimation and standard deviation as a result
- Machine learning approach suitable for application with few data available
- Good results expected for bundles within training data base
- Different analysis steps made (Feature tests, sensitivity analysis, different model setups,

Academic bundles

- Effective bending stiffnesses
- Training with 80% / test with 20% of the data base

Academic bundles

- Effective torsional stiffnesses
- Training with 80% / test with 20% of the data base

Random bundles

- Eff. bending and torsional
- academic bundles
- random bundles

- **Bundle from** automotive application
- Validation of eff. bundle bending
- stiffness
- Sensitivity analysis

- Absoluter Schätzfehler: 0,008Nm²
- **Relativer Schätzfehler:** 0,133

Prediction of effective cable bundle stiffnesses

Preliminary work

- Probabilistic model, with point estimation and standard deviation as a result
- Machine learning approach suitable for application with few data available
- Good results expected for bundles within training data base
- Different analysis steps made (Feature tests, sensitivity analysis, different model setups,...)

🗾 Fraunhofer 🛛 🖾 Fraunhofer 🛛 Fraunhofer

IWM

Process Validation with Cable Bundles from Automotive Application

Bundles from complete door wiring

Variant of complete door wiring

- Same condition as it is before assembling (folded and fixed with a rubber band)
- Samples generated by cutting out segments of sufficient length
- After measuring the effective stiffnesses of the bundle the taping has been removed and all base cables were measured
- Twisted pairs are handled as one base cable specimen (cables are not separeted from each other)
- All measured components:
 - 18 different base cables
 (diameter: 1,3 mm 1,6 mm 2,8 mm)
 - 4 twisted pairs
- Measurement techniques:
 - MeSOMICS bending stiffness
 - Standard torsional stiffness

Process Validation with Cable Bundles from Automotive Application

Bundles from complete door wiring

Bundle no.	half	fully
1	4 base cables, 2 of them are twisted pairs	7 base cables, 3 of them are twisted pairs
2		12 base cables, 4 of them are twisted pairs
3		5 base cables, 1 of them are twisted pairs
4		7 base cables, no twisted pairs

Effective Bending Stiffness of Test Bundles

Fraunhofer 🛛 Fraunhofer 🖉 Fraunhofer IWM

IAIS

Input Features for Effective Bending Stiffness Estimation of Test Bundles

💹 Fraunhofer 🛛 🖾 Fraunhofer 🛛 Fraunhofer

IWM

IAIS

Input Features for Effective Bending Stiffness Estimation of Test Bundles

sum(El_c) for half taped bundles sum(rhoA_c) for half taped bundles 0.06 All input features required for 0.05 -min training data -min training data -max training data -max training data 0.8 effective bending stiffness * test data 0.04 test data [kg/m] [2 8.03 ∎ estimation lie within training data boundaries 0.02 Test bundles are more flexible 0.2 0.01 and consist of thinner base cables than most of the 1.2 1.6 1.8 0.2 0.4 0.6 0.8 1.4 0.2 0.6 0.8 1.2 1.4 1.6 1.8 2 0 0.4 Bundle no. Bundle no. training bundles sum(El_c) for fully taped bundles sum(rhoA_c) for fully taped bundles 0.06 sum(El_ح) for fully taped bundles 0.05 -min training data -max training data -min training data 0.8 -max training data test data -min training data 0.04 test data -max training data test data 0.6 [kg/m] N² 0.03 [Nm²] 0.4 0.02 0.01 0.2 zoom 2.5 1.5 3.5 2.5 0.5 3 3.5 4.5 0 1 1.5 2 4 5 0.5 1 1.5 2 2.5 3 3.5 4.5 5 Δ Bundle no Bundle no Bundle no.

💹 Fraunhofer 🛛 🖾 Fraunhofer 🛛 🖉 Fraunhofer

IWM

IAIS

ITWM

Seite 15

Estimation Results

for Effective Bending Stiffness Estimation

- Comparison of estimated bundle bending stiffness and measured effective bending stiffness
- Additionally, measurement range of test bundles is illustrated, which is quite large
- \rightarrow Very good result for the half taped bundle
- → Estimated bundle bending stiffness too high for the first two test bundles (but looking at the measurement range, this result isn't as bad as it seems...)
- Very good estimation results for fully taped bundles no. 3 and 4

Abs. error: 0.0077 / 0.0115 / 0.0002 / 0.0002 Nm²

Fraunhofer Fraunhofer Fraunhofer

Estimation Results

for Effective Bending Stiffness Estimation

Bundle no.	Composition	taping	Rel. prediction error for El _B
1	4 base cables, 2 of them are twisted pairs	half	0.1651
1	7 base cables, 3 of them are twisted pairs	fully	2.5171
2	12 base cables, 4 of them are twisted pairs		1.7235
3	5 base cables, 1 of them are twisted pairs		0.1462
4	7 base cables, no twisted pairs		0.0923

- Most of the effective bundle bending stiffness estimations (3 of 5) lie within the desired 50%-error interval
- Worst estimation result observed for the bundles with the most twisted pairs (bdl. 1 & 2, fully)
- Best estimation result for the bundle without any twisted pair (bdl. 4, fully)

- → The estimation of effective bundle bending stiffnesses works well for bundles, which do not differ widely in their composition and feature values
- \rightarrow Twisted pairs vary strongly from the ones used for GP training \rightarrow training data set should be extended

Effective Torsional Stiffness of Test Bundles

🗾 Fraunhofer 🛛 Fraunhofer 🛛 Fraunhofer

IWM

IAIS

Seite 19

IWM

IAIS

Estimation Results

for Effective Torsional Stiffness Estimation

- Comparison of estimated bundle torsional stiffness and measured effective bending stiffness
- Additionally, measurement range of test bundles is illustrated
- \rightarrow Very good result for the half taped bundle
- \rightarrow Very good result for the first two fully taped test bundles
- \rightarrow Estimated effective bundle bending stiffness too high for bundle no. 3 and 4 (fully taped)

Abs. error: -0.0043 / -0.0009 / 0.0142 / 0.0114 Nm²

ITWM

🗾 Fraunhofer 🛛 🖾 Fraunhofer 🛛 🖉 Fraunhofer IAIS IWM

Estimation Results

for Effective Torsional Stiffness Estimation

Bundle no.	Composition	taping	Rel. prediction error for El _B	Rel. prediction error for GJ _B
1	4 base cables, 2 of them are twisted pairs	half	0.1651	0.0741
1	7 base cables, 3 of them are twisted pairs	fully	2.5171	-0.5766
2	12 base cables, 4 of them are twisted pairs		1.7235	-0.0823
3	5 base cables, 1 of them are twisted pairs		0.1462	10.6790
4	7 base cables, no twisted pairs		0.0923	7.2419

■ Base cables in bundle 3 and 4 are too torsional elastic compared to bundles from training data set → bad estimation results, as expected → training data set should be extended

Conclusion and Outlook

- Successful usage of well-sorted data downloaded from ontology
- A ML algorithm is developed, analyzed and trained for the estimation of effective bundle stiffnesses
- The ML algorithm is successful for bundles, which do not differ widely in their composition and feature values

Outlook

- Data set extension (bundles with twisted pairs, thin and more flexible base cables,...)
- Further customized measurement campaigns
- Model setup modifications, new features and additional ML training

IWM

Vielen Dank für Ihre Aufmerksamkeit!

Kontakt

Lilli Burger, Vanessa Dörlich, Fabio Schneider-Jung

Fraunhofer-Institut für Techno- und Wirtschaftsmathematik (ITWM) Bereich *Mathematik für die Fahrzeugentwicklung*

[Lilli.Burger, Vanessa.Doerlich, Fabio.Julian.Schneider-Jung] @itwm.fraunhofer.de

