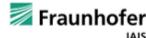
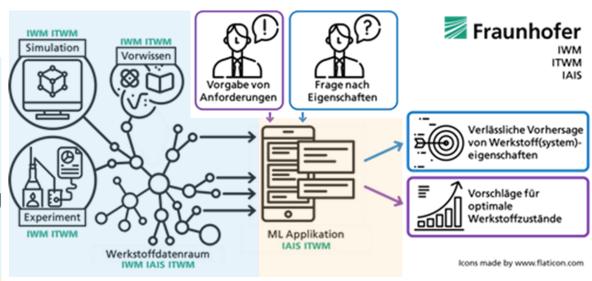

ONLINE-VERANSTALTUNG

Einführung


Abschlusskolloquium des Fraunhofer-Konsortiums »UrWerk« zur Entwicklung von unternehmensspezifischen Werkstoff(system)-Datenräumen

Moderation Dr. Michael Luke Projektleiter »UrWerk« Geschäftsfeldleiter »Bauteilsicherheit und Leichtbau« am Fraunhofer-Institut für Werkstoffmechanik IWM

24. November 2022


Abschlusskolloquium »UrWerk«

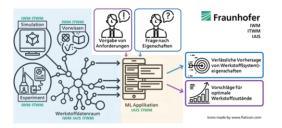
Fraunhofer Vorlaufprojekt durchgeführt von 03/19 bis 08/22

Demonstration des Nutzens der strukturierten Datenablage von Werkstoff(system)-Daten für die beschleunigte Produktentwicklung durch innovative Analyse- und Prognosetechnologien

»UrWerk« ist konzipiert als initialer Schritt in der Entwicklung

- maßgeschneiderter, unternehmensspezifischer und -übergreifender Werkstoff(system)-Datenräume,
- welche die komplexe Historie von Werkstoff(system)en und deren Wechselwirkung in Form von Wissens- bzw. Netzwerkgraphen abbilden
- und die einfache Ankopplung innovativer Analyse- und Prognosewerkzeuge ermöglichen.

strukturiertes Ablegen, Analysieren und Nutzen von Daten für zwei konkrete Anwendungsfälle



Abschlusskolloquium »UrWerk«

Roter Faden

- Demonstration des Nutzens einer strukturierten (maschinenlesbaren) Datenablage
 - »Bewertung der Ermüdungsfestigkeit hochfester Stähle« Werkstoff-Eigenschaften: Aufbereitung, Strukturierung, Kuratierung, Datenintegration und datengetriebene Auswertung
 - »Vorhersage von Modellparametern für die Simulation von Kabelbündeln« Werkstoffsystem-Eigenschaften: Planung von Messkampagnen, Strukturierung und datengetriebene Auswertung
- Fokus liegt auf der Umsetzung der Anwendungsbeispiele von der Datenerfassung bis zur Auswertung (nicht auf der Ausarbeitung aller Details)
- Heute werden kombinierbare und übertragbare Teillösungen vorgestellt
- Können Sie sich eine analoge Vorgehensweise für Ihre Anwendung vorstellen?
- Wir (das Projektkonsortium), wollen Erfahrungen teilen und Anregungen mitnehmen und weitere Schritte planen

Die Folien zum Abschlusskolloquium werden per Download-Link zur Verfügung gestellt.

Agenda

10:00	Begrüßung und Einführung
	»Digital verfügbares Werkstoff- und Prozesswissen für die beschleunigte Produktentwicklung«
	Michael Luke
10:10	Anwendungsbeispiel »Bewertung der Lebensdauer hochfester Stähle« im Überblick
	Sascha Fliegener
10:30	Live Demo der Nutzung von Datenraum-Werkzeugen (Ontologie, Prozessgraph, Abfragen)
	Sascha Fliegener, José Dominguez, Joana Morgado, Johannes Rosenberger
11:10	Diskussion
	alle
11:25	Live Demo der Nutzung von Machine Learning Analysen zur Vorhersage der Ermüdungsfestigkeit von hochfesten Stählen
	Johannes Rosenberger, Hans-Ulrich Kobialka, Sascha Fliegener
11:45	Diskussion
	alle
12:00	Mittagspause
13:00	Live Demo der Nutzung von Design of Experiments für die Planung von Lebensdauerversuchen (Treppenstufenverfahren)
	Gunar Ernis
13:15	Diskussion
	alle
13:30	Anwendungsbeispiel »Vorhersage von Modellparametern für die Simulation von Kabelbündeln«
	Vanessa Dörlich, Fabio Schneider-Jung
13:40	Datenbasierte Vorhersage von Kabelbündelsteifigkeiten
	Lilli Burger
14:10	Diskussion
	alle
14:20	Kooperationsmöglichkeiten, Transfer und Projektideen des Konsortiums
	Michael Luke, Vanessa Dörlich, Gunar Ernis
14:40	Diskussion
	alle
14:55	Verabschiedung
15.00	Ende der Veranstaltung

