Press

On this page you can view or order our various publications, find out about about our upcoming events and get more detailed information about the Fraunhofer IWM. By scrolling farther down this page you can see the complete list of our press releases and news articles, which are also searchable by date or keyword.  

Cancel
  • As the most important industrial construction material, with more than 2,500 grades, steel is highly specialized for diverse applications. Even the smallest changes of the composition can modify the material structure on an atomic scale and improve material properties on the macroscale. The consortium of the EU-project Z-Ultra, led by the Fraunhofer Institute for Mechanics of Materials IWM, has developed new 12% chromium alloys for high-temperature applications that are up to 30% stronger than traditional 9% chromium steels and withstand higher temperatures and pressures for a longer period of time. Atomistic simulations supported the development of the new steel alloys in a targeted manner.

    more info
  • The automotive industry uses long fiber reinforced thermoplastics (LFTs) when manufacturing lightweight structural parts such as bumper brackets or door modules. Accurate simulation methods are needed to exploit their maximum lightweight potential. Therefore, the material’s microstructure needs to be considered. In this respect, however, existing simulation methods currently take into account significant simplifications. With his new model, Dr. Sascha Fliegener from the Fraunhofer Institute for Mechanics of Materials IWM has made a considerable step towards a realistic representation of the microstructure. Manufacturers of parts and materials can use his model to precisely predict mechanical behavior based on the geometry of the microstructure.

    more info
  • Additive manufacturing: In the past, insoles for patients with diabetes were hand-made by orthopedic shoemakers. In the future, these specialist shoemakers will be able to produce insoles more cost-effectively thanks to new software and the use of 3D printers.This approach means the mechanical properties of each insole can be assessed scientifically and more effectively.

    more info
  • In Concentrated Solar Power (CSP) plants, the quality and durability of the employed functional materials have a high impact on the cost of the produced solar heat or electricity. Eleven European partners from the R&D sector, universities and industry affiliated together with the Moroccan Research Institute of MASCIR and the Israeli company of BrightSource to work during the next 4 years on improving the lifetime of key materials used in CSP.

    more info
  • Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

    more info
  • The question of whether a liquid beads or adheres to a surface plays a role in almost all branches of industry. Researchers from the Fraunhofer Institute for Mechanics of Materials IWM in Freiburg and ExxonMobil Research & Engineering in New Jersey have now developed a multiscale simulation method for predicting the wetting behavior of liquids on surfaces. In a recent edition of the Journal of the American Chemical Society, the research team applied this methodology to the previously unexplained phenomenon of polar hydrophobicity in fluorinated carbon surfaces.

    more info
  • If food packaging or drug packaging is not properly sealed when the customer buys the product, it reflects poorly on the manufacturer. In the future, a thin-film temperature sensor will allow companies to carry out fast and reliable inline detection and rejection of packaging which has been incorrectly sealed.

    more info
  • Testing toothpastes and toothbrushes Designing toothpastes and toothbrushes is a time-consuming process involving the production and testing of numerous samples. Using a new type of simulation, various parameters such as bristle shape and abrasive particle size can be modified with just a click. This enables manufacturers to improve the quality of new dental care products and bring them to market more quickly.

    more info
  • On February 8, 2016, Prof. Dr. Peter Gumbsch, head of the Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany and Professor of Mechanics of Materials at the Karlsruhe Institute of Technology KIT, was elected for membership in the USA’s National Academy of Engineering (NAE). Prof. Gumbsch was chosen for his multiscale modeling research work and the associated contributions in the fields of fracture mechanics and deformation behavior of materials.

    more info
  • It’s long established that flow grinding can be utilized to grind and polish the inner surfaces of components such as corners and drill holes: a fluid containing grinding particles is pumped through the component. However, flow dead zones can arise when a component has a complex form. In these cases, the flow stagnates at a specific spot, which results in the grinding process being ineffective in that area. To address this, a new magnetorheological flow grinding procedure for aluminum based components has been developed by scientists at the Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, in a joint project. This process allows difficult to reach dead volume areas deep inside components to be accurately ground and polished.

    more info